
Compute the limit given in the problem: $\displaystyle \lim_{x \to a}\dfrac{\log x-\log a}{\tan \left( x-a \right)}$?
(a) $\dfrac{1}{a}$
(b) a
(c) 0
(d) $\dfrac{2}{a}$
Answer
570.6k+ views
Hint: We start solving the problem by assuming the given limit equal to L. We then assume $y=x-a$ and find the change in limit with respect to y. We then make all the necessary arrangements in the limit L and then multiply the numerator and denominator with ‘y’. We then make use of the results $\displaystyle \lim_{x \to a}\left( f\left( x \right)\times g\left( x \right) \right)=\displaystyle \lim_{x \to a}\left( f\left( x \right) \right)\times \displaystyle \lim_{x \to a}\left( g\left( x \right) \right)$, $\displaystyle \lim_{x \to a}\left( \dfrac{1}{f\left( x \right)} \right)=\dfrac{1}{\displaystyle \lim_{x \to a}\left( f\left( x \right) \right)}$ to proceed through the problem. We then make use of the results $\displaystyle \lim_{x \to 0}\left( \dfrac{\log \left( x+a \right)-\log a}{x} \right)=\dfrac{1}{a}$ and $\displaystyle \lim_{x \to 0}\left( \dfrac{\tan x}{x} \right)=1$ to get the required value of limit.
Complete step-by-step solution
According to the problem, we are asked to find the given limit $\displaystyle \lim_{x \to a}\dfrac{\log x-\log a}{\tan \left( x-a \right)}$.
Let us assume $L=\displaystyle \lim_{x \to a}\dfrac{\log x-\log a}{\tan \left( x-a \right)}$ ---(1).
Let us assume $y=x-a$ so, we get $x=y+a$ ---(2).
We have given that $x \to a$ which leads us to $x-a\to 0\Leftrightarrow y\to 0$ ---(3).
Let us substitute equations (2) and (3) in equation (1).
So, we get $L=\displaystyle \lim_{y\to 0}\dfrac{\log \left( y+a \right)-\log a}{\tan y}$ ---(4).
Let us multiply the numerator and denominator of the limit with ‘y’ in equation (4).
$\Rightarrow L=\displaystyle \lim_{y\to 0}\dfrac{\left( \log \left( y+a \right)-\log a \right)\times y}{\tan y\times y}$.
$\Rightarrow L=\displaystyle \lim_{y\to 0}\dfrac{\left( \log \left( y+a \right)-\log a \right)}{y}\times \dfrac{y}{\tan y}$.
$\Rightarrow L=\displaystyle \lim_{y\to 0}\dfrac{\left( \log \left( y+a \right)-\log a \right)}{y}\times \dfrac{1}{\dfrac{\tan y}{y}}$.
We know that $\displaystyle \lim_{x \to a}\left( f\left( x \right)\times g\left( x \right) \right)=\displaystyle \lim_{x \to a}\left( f\left( x \right) \right)\times \displaystyle \lim_{x \to a}\left( g\left( x \right) \right)$.
$\Rightarrow L=\displaystyle \lim_{y\to 0}\dfrac{\left( \log \left( y+a \right)-\log a \right)}{y}\times \displaystyle \lim_{y\to 0}\dfrac{1}{\dfrac{\tan y}{y}}$.
We know that $\displaystyle \lim_{x \to a}\left( \dfrac{1}{f\left( x \right)} \right)=\dfrac{1}{\displaystyle \lim_{x \to a}\left( f\left( x \right) \right)}$.
$\Rightarrow L=\displaystyle \lim_{y\to 0}\dfrac{\left( \log \left( y+a \right)-\log a \right)}{y}\times \dfrac{1}{\displaystyle \lim_{y\to 0}\left( \dfrac{\tan y}{y} \right)}$.
We know that $\displaystyle \lim_{x \to 0}\left( \dfrac{\log \left( x+a \right)-\log a}{x} \right)=\dfrac{1}{a}$ and $\displaystyle \lim_{x \to 0}\left( \dfrac{\tan x}{x} \right)=1$.
$\Rightarrow L=\dfrac{1}{a}\times \dfrac{1}{1}$.
$\Rightarrow L=\dfrac{1}{a}$.
So, we have found the value of the limit $\displaystyle \lim_{x \to a}\dfrac{\log x-\log a}{\tan \left( x-a \right)}$ as $\dfrac{1}{a}$.
$\therefore$ The correct option for the given problem is (a).
Note: We can see that the given problem contains a huge amount of calculation, so we need to perform each step carefully to avoid mistakes. We can also solve this problem as shown below:
So, we have $L=\displaystyle \lim_{x \to a}\dfrac{\log x-\log a}{\tan \left( x-a \right)}$.
$\Rightarrow L=\dfrac{\log a-\log a}{\tan \left( a-a \right)}=\dfrac{0}{\tan \left( 0 \right)}=\dfrac{0}{0}form$.
We know that whenever we get the limit in the form of undetermined forms of $\dfrac{0}{0}$, $\dfrac{\infty }{\infty }$. We can make use of the L-Hospital rule. We know that L-Hospital rule is defined as $\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}=\displaystyle \lim_{x \to a}\dfrac{{{f}^{'}}\left( x \right)}{{{g}^{'}}\left( x \right)}=\displaystyle \lim_{x \to a}\dfrac{{{f}^{''}}\left( x \right)}{{{g}^{''}}\left( x \right)}=...........$.
So, we get $L=\displaystyle \lim_{x \to a}\dfrac{\dfrac{d}{dx}\left( \log x-\log a \right)}{\dfrac{d}{dx}\left( \tan \left( x-a \right) \right)}$.
$\Rightarrow L=\displaystyle \lim_{x \to a}\dfrac{\dfrac{d}{dx}\left( \log x \right)-\dfrac{d}{dx}\left( \log a \right)}{\dfrac{d}{dx}\left( \tan \left( x-a \right) \right)}$.
$\Rightarrow L=\displaystyle \lim_{x \to a}\dfrac{\dfrac{1}{x}-0}{{{\sec }^{2}}\left( x-a \right)}$.
$\Rightarrow L=\displaystyle \lim_{x \to a}\dfrac{\dfrac{1}{x}}{{{\sec }^{2}}\left( x-a \right)}$.
$\Rightarrow L=\dfrac{\dfrac{1}{a}}{{{\sec }^{2}}\left( a-a \right)}$.
$\Rightarrow L=\dfrac{\dfrac{1}{a}}{{{\sec }^{2}}\left( 0 \right)}$.
$\Rightarrow L=\dfrac{\dfrac{1}{a}}{1}$.
Complete step-by-step solution
According to the problem, we are asked to find the given limit $\displaystyle \lim_{x \to a}\dfrac{\log x-\log a}{\tan \left( x-a \right)}$.
Let us assume $L=\displaystyle \lim_{x \to a}\dfrac{\log x-\log a}{\tan \left( x-a \right)}$ ---(1).
Let us assume $y=x-a$ so, we get $x=y+a$ ---(2).
We have given that $x \to a$ which leads us to $x-a\to 0\Leftrightarrow y\to 0$ ---(3).
Let us substitute equations (2) and (3) in equation (1).
So, we get $L=\displaystyle \lim_{y\to 0}\dfrac{\log \left( y+a \right)-\log a}{\tan y}$ ---(4).
Let us multiply the numerator and denominator of the limit with ‘y’ in equation (4).
$\Rightarrow L=\displaystyle \lim_{y\to 0}\dfrac{\left( \log \left( y+a \right)-\log a \right)\times y}{\tan y\times y}$.
$\Rightarrow L=\displaystyle \lim_{y\to 0}\dfrac{\left( \log \left( y+a \right)-\log a \right)}{y}\times \dfrac{y}{\tan y}$.
$\Rightarrow L=\displaystyle \lim_{y\to 0}\dfrac{\left( \log \left( y+a \right)-\log a \right)}{y}\times \dfrac{1}{\dfrac{\tan y}{y}}$.
We know that $\displaystyle \lim_{x \to a}\left( f\left( x \right)\times g\left( x \right) \right)=\displaystyle \lim_{x \to a}\left( f\left( x \right) \right)\times \displaystyle \lim_{x \to a}\left( g\left( x \right) \right)$.
$\Rightarrow L=\displaystyle \lim_{y\to 0}\dfrac{\left( \log \left( y+a \right)-\log a \right)}{y}\times \displaystyle \lim_{y\to 0}\dfrac{1}{\dfrac{\tan y}{y}}$.
We know that $\displaystyle \lim_{x \to a}\left( \dfrac{1}{f\left( x \right)} \right)=\dfrac{1}{\displaystyle \lim_{x \to a}\left( f\left( x \right) \right)}$.
$\Rightarrow L=\displaystyle \lim_{y\to 0}\dfrac{\left( \log \left( y+a \right)-\log a \right)}{y}\times \dfrac{1}{\displaystyle \lim_{y\to 0}\left( \dfrac{\tan y}{y} \right)}$.
We know that $\displaystyle \lim_{x \to 0}\left( \dfrac{\log \left( x+a \right)-\log a}{x} \right)=\dfrac{1}{a}$ and $\displaystyle \lim_{x \to 0}\left( \dfrac{\tan x}{x} \right)=1$.
$\Rightarrow L=\dfrac{1}{a}\times \dfrac{1}{1}$.
$\Rightarrow L=\dfrac{1}{a}$.
So, we have found the value of the limit $\displaystyle \lim_{x \to a}\dfrac{\log x-\log a}{\tan \left( x-a \right)}$ as $\dfrac{1}{a}$.
$\therefore$ The correct option for the given problem is (a).
Note: We can see that the given problem contains a huge amount of calculation, so we need to perform each step carefully to avoid mistakes. We can also solve this problem as shown below:
So, we have $L=\displaystyle \lim_{x \to a}\dfrac{\log x-\log a}{\tan \left( x-a \right)}$.
$\Rightarrow L=\dfrac{\log a-\log a}{\tan \left( a-a \right)}=\dfrac{0}{\tan \left( 0 \right)}=\dfrac{0}{0}form$.
We know that whenever we get the limit in the form of undetermined forms of $\dfrac{0}{0}$, $\dfrac{\infty }{\infty }$. We can make use of the L-Hospital rule. We know that L-Hospital rule is defined as $\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}=\displaystyle \lim_{x \to a}\dfrac{{{f}^{'}}\left( x \right)}{{{g}^{'}}\left( x \right)}=\displaystyle \lim_{x \to a}\dfrac{{{f}^{''}}\left( x \right)}{{{g}^{''}}\left( x \right)}=...........$.
So, we get $L=\displaystyle \lim_{x \to a}\dfrac{\dfrac{d}{dx}\left( \log x-\log a \right)}{\dfrac{d}{dx}\left( \tan \left( x-a \right) \right)}$.
$\Rightarrow L=\displaystyle \lim_{x \to a}\dfrac{\dfrac{d}{dx}\left( \log x \right)-\dfrac{d}{dx}\left( \log a \right)}{\dfrac{d}{dx}\left( \tan \left( x-a \right) \right)}$.
$\Rightarrow L=\displaystyle \lim_{x \to a}\dfrac{\dfrac{1}{x}-0}{{{\sec }^{2}}\left( x-a \right)}$.
$\Rightarrow L=\displaystyle \lim_{x \to a}\dfrac{\dfrac{1}{x}}{{{\sec }^{2}}\left( x-a \right)}$.
$\Rightarrow L=\dfrac{\dfrac{1}{a}}{{{\sec }^{2}}\left( a-a \right)}$.
$\Rightarrow L=\dfrac{\dfrac{1}{a}}{{{\sec }^{2}}\left( 0 \right)}$.
$\Rightarrow L=\dfrac{\dfrac{1}{a}}{1}$.
Recently Updated Pages
Questions & Answers - Ask your doubts

Master Class 9 Social Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

