
How to complete this identity $\dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }}$?
A. $\tan \alpha \tan \beta + \cot \beta $
B. $1 + \tan \alpha \tan \beta $
C. \[1 + \cot \alpha \tan \beta \]
D. \[1 + \cot \alpha \cot \beta \]
Answer
463.2k+ views
Hint: This problem deals with solving the given equation with trigonometric identities and compound sum angles of trigonometric functions. A compound angle formula or addition formula is a trigonometric identity which expresses a trigonometric function of $\left( {A + B} \right)$ or $\left( {A - B} \right)$in terms of trigonometric functions of $A$ and $B$. The used formula here is:
$ \Rightarrow \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$
Complete step-by-step answer:
Given an expression of trigonometric expression functions.
The given expression is $\dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }}$, consider this as given below:
$ \Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }}$
We know the compound angle formula of cosine, hence applying it to the numerator of the given expression, as shown below:
$ \Rightarrow \cos \left( {\alpha - \beta } \right) = \cos \alpha \cos \beta + \sin \alpha \sin \beta $
The given denominator of the expression is given below:
$ \Rightarrow \cos \alpha \cos \beta $
Now substitution the obtained simplified expression of the numerator of the given expression, as shown below:
\[ \Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta + \sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}\]
Now split the fraction into separate fractions on right hand side of the above equation, as shown below:
\[ \Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta }}{{\cos \alpha \cos \beta }} + \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}\]
Now after splitting the fractions, the first term becomes 1, as the numerator and the denominator are equal.
Now the second term is split in such a way that it can be converted to another trigonometric function:
\[ \Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = 1 + \left( {\dfrac{{\sin \alpha }}{{\cos \alpha }}} \right)\left( {\dfrac{{\sin \beta }}{{\cos \beta }}} \right)\]
We know that $\dfrac{{\sin A}}{{\cos A}} = \tan A$, applying this identity below:
Here replacing the expression \[\dfrac{{\sin \alpha }}{{\cos \alpha }}\] with $\tan \alpha $, and replacing the expression \[\dfrac{{\sin \beta }}{{\cos \beta }}\] with $\tan \beta $,as shown below:
\[ \Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = 1 + \tan \alpha \tan \beta \]
Final Answer: The expression is equal to, $\dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = 1 + \tan \alpha \tan \beta $
Note:
Please note that the formula of cosine compound angles formula is used to solve this problem, but there are a few other trigonometric compound angle formulas of sine, cosine and tangent, which are shown below:
$ \Rightarrow \sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$
$ \Rightarrow \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$
$ \Rightarrow \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$
$ \Rightarrow \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$
$ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
$ \Rightarrow \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
$ \Rightarrow \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$
Complete step-by-step answer:
Given an expression of trigonometric expression functions.
The given expression is $\dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }}$, consider this as given below:
$ \Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }}$
We know the compound angle formula of cosine, hence applying it to the numerator of the given expression, as shown below:
$ \Rightarrow \cos \left( {\alpha - \beta } \right) = \cos \alpha \cos \beta + \sin \alpha \sin \beta $
The given denominator of the expression is given below:
$ \Rightarrow \cos \alpha \cos \beta $
Now substitution the obtained simplified expression of the numerator of the given expression, as shown below:
\[ \Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta + \sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}\]
Now split the fraction into separate fractions on right hand side of the above equation, as shown below:
\[ \Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta }}{{\cos \alpha \cos \beta }} + \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}\]
Now after splitting the fractions, the first term becomes 1, as the numerator and the denominator are equal.
Now the second term is split in such a way that it can be converted to another trigonometric function:
\[ \Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = 1 + \left( {\dfrac{{\sin \alpha }}{{\cos \alpha }}} \right)\left( {\dfrac{{\sin \beta }}{{\cos \beta }}} \right)\]
We know that $\dfrac{{\sin A}}{{\cos A}} = \tan A$, applying this identity below:
Here replacing the expression \[\dfrac{{\sin \alpha }}{{\cos \alpha }}\] with $\tan \alpha $, and replacing the expression \[\dfrac{{\sin \beta }}{{\cos \beta }}\] with $\tan \beta $,as shown below:
\[ \Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = 1 + \tan \alpha \tan \beta \]
Final Answer: The expression is equal to, $\dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = 1 + \tan \alpha \tan \beta $
Note:
Please note that the formula of cosine compound angles formula is used to solve this problem, but there are a few other trigonometric compound angle formulas of sine, cosine and tangent, which are shown below:
$ \Rightarrow \sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$
$ \Rightarrow \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$
$ \Rightarrow \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$
$ \Rightarrow \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$
$ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
$ \Rightarrow \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
