
How to complete this identity $\dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }}$?
A. $\tan \alpha \tan \beta + \cot \beta $
B. $1 + \tan \alpha \tan \beta $
C. \[1 + \cot \alpha \tan \beta \]
D. \[1 + \cot \alpha \cot \beta \]
Answer
561k+ views
Hint: This problem deals with solving the given equation with trigonometric identities and compound sum angles of trigonometric functions. A compound angle formula or addition formula is a trigonometric identity which expresses a trigonometric function of $\left( {A + B} \right)$ or $\left( {A - B} \right)$in terms of trigonometric functions of $A$ and $B$. The used formula here is:
$ \Rightarrow \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$
Complete step-by-step answer:
Given an expression of trigonometric expression functions.
The given expression is $\dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }}$, consider this as given below:
$ \Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }}$
We know the compound angle formula of cosine, hence applying it to the numerator of the given expression, as shown below:
$ \Rightarrow \cos \left( {\alpha - \beta } \right) = \cos \alpha \cos \beta + \sin \alpha \sin \beta $
The given denominator of the expression is given below:
$ \Rightarrow \cos \alpha \cos \beta $
Now substitution the obtained simplified expression of the numerator of the given expression, as shown below:
\[ \Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta + \sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}\]
Now split the fraction into separate fractions on right hand side of the above equation, as shown below:
\[ \Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta }}{{\cos \alpha \cos \beta }} + \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}\]
Now after splitting the fractions, the first term becomes 1, as the numerator and the denominator are equal.
Now the second term is split in such a way that it can be converted to another trigonometric function:
\[ \Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = 1 + \left( {\dfrac{{\sin \alpha }}{{\cos \alpha }}} \right)\left( {\dfrac{{\sin \beta }}{{\cos \beta }}} \right)\]
We know that $\dfrac{{\sin A}}{{\cos A}} = \tan A$, applying this identity below:
Here replacing the expression \[\dfrac{{\sin \alpha }}{{\cos \alpha }}\] with $\tan \alpha $, and replacing the expression \[\dfrac{{\sin \beta }}{{\cos \beta }}\] with $\tan \beta $,as shown below:
\[ \Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = 1 + \tan \alpha \tan \beta \]
Final Answer: The expression is equal to, $\dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = 1 + \tan \alpha \tan \beta $
Note:
Please note that the formula of cosine compound angles formula is used to solve this problem, but there are a few other trigonometric compound angle formulas of sine, cosine and tangent, which are shown below:
$ \Rightarrow \sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$
$ \Rightarrow \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$
$ \Rightarrow \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$
$ \Rightarrow \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$
$ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
$ \Rightarrow \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
$ \Rightarrow \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$
Complete step-by-step answer:
Given an expression of trigonometric expression functions.
The given expression is $\dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }}$, consider this as given below:
$ \Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }}$
We know the compound angle formula of cosine, hence applying it to the numerator of the given expression, as shown below:
$ \Rightarrow \cos \left( {\alpha - \beta } \right) = \cos \alpha \cos \beta + \sin \alpha \sin \beta $
The given denominator of the expression is given below:
$ \Rightarrow \cos \alpha \cos \beta $
Now substitution the obtained simplified expression of the numerator of the given expression, as shown below:
\[ \Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta + \sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}\]
Now split the fraction into separate fractions on right hand side of the above equation, as shown below:
\[ \Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta }}{{\cos \alpha \cos \beta }} + \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}\]
Now after splitting the fractions, the first term becomes 1, as the numerator and the denominator are equal.
Now the second term is split in such a way that it can be converted to another trigonometric function:
\[ \Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = 1 + \left( {\dfrac{{\sin \alpha }}{{\cos \alpha }}} \right)\left( {\dfrac{{\sin \beta }}{{\cos \beta }}} \right)\]
We know that $\dfrac{{\sin A}}{{\cos A}} = \tan A$, applying this identity below:
Here replacing the expression \[\dfrac{{\sin \alpha }}{{\cos \alpha }}\] with $\tan \alpha $, and replacing the expression \[\dfrac{{\sin \beta }}{{\cos \beta }}\] with $\tan \beta $,as shown below:
\[ \Rightarrow \dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = 1 + \tan \alpha \tan \beta \]
Final Answer: The expression is equal to, $\dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \alpha \cos \beta }} = 1 + \tan \alpha \tan \beta $
Note:
Please note that the formula of cosine compound angles formula is used to solve this problem, but there are a few other trigonometric compound angle formulas of sine, cosine and tangent, which are shown below:
$ \Rightarrow \sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$
$ \Rightarrow \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$
$ \Rightarrow \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$
$ \Rightarrow \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$
$ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
$ \Rightarrow \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

