
Compare the areas under the curves $y={{\cos }^{2}}x\ and\ y={{\sin }^{2}}x$ between \[x=0\ and\ x=\pi \].
Answer
607.5k+ views
Hint: We will first start by drawing the rough sketch of the graph of both $y={{\cos }^{2}}x\ and\ y={{\sin }^{2}}x$. Then we will find the area between \[x=0\ and\ x=\pi \] and then compare the result.
Complete step-by-step answer:
Now, we will first draw the graph of $y={{\sin }^{2}}x\ and\ y={{\cos }^{2}}x$,
Now, we have to find the area of ${{\sin }^{2}}x$ between \[0\ to\ \pi \]. We know that the area under the curve is \[\int{f\left( x \right)dx}\].
\[\Rightarrow \int\limits_{0}^{\pi }{{{\sin }^{2}}xdx}\]
Now, we know the trigonometric identity that,
$\begin{align}
& \cos 2x=1-2{{\sin }^{2}}x \\
& \Rightarrow 1-\cos 2x=2{{\sin }^{2}}x \\
& \Rightarrow {{\sin }^{2}}x=\dfrac{1-\cos 2x}{2} \\
\end{align}$
Now, using this in integral we have,
\[\begin{align}
& \int\limits_{0}^{\pi }{\left( \dfrac{1-\cos 2x}{2} \right)} \\
& \Rightarrow \int\limits_{0}^{\pi }{\left( \dfrac{1}{2}-\dfrac{1}{2}\cos 2x \right)}dx \\
\end{align}\]
Now, we know that,
\[\begin{align}
& \int{\cos 2\theta =\dfrac{\sin 2\theta }{2}} \\
& \Rightarrow \left( \dfrac{1}{2}x-\dfrac{1}{2}\dfrac{\sin 2x}{2} \right)_{0}^{\pi } \\
& \Rightarrow \left. \dfrac{x}{2} \right|_{0}^{\pi }-\dfrac{1}{4}\left. \times \sin 2x \right|_{0}^{\pi } \\
& \Rightarrow \dfrac{\pi }{2}-\dfrac{1}{4}\left( \sin 2\pi -\sin 0 \right) \\
& \Rightarrow \dfrac{\pi }{2}-\dfrac{1}{4}\left( 0-0 \right) \\
& \Rightarrow \dfrac{\pi }{2}sq\ units \\
\end{align}\]
Now, similarly for the area of \[{{\cos }^{2}}x\] we have,
\[\Rightarrow \int\limits_{0}^{\pi }{{{\cos }^{2}}xdx}\]
Now, we know that
\[\begin{align}
& \cos 2x=2{{\cos }^{2}}x-1 \\
& \dfrac{\cos 2x+1}{2}={{\cos }^{2}}x \\
\end{align}\]
So, using this we have,
\[\begin{align}
& \int\limits_{0}^{\pi }{\left( \dfrac{\cos 2x+1}{2} \right)}dx \\
& \Rightarrow \int\limits_{0}^{\pi }{\left( \dfrac{\cos 2x}{2}+\dfrac{1}{2} \right)}dx \\
& \Rightarrow \left( \dfrac{\sin 2x}{4}+\dfrac{1}{2}x \right)_{0}^{\pi } \\
& \Rightarrow \dfrac{\sin \left( 2\pi \right)-\sin \left( 0 \right)}{2}+\dfrac{1}{2}\left( \pi -0 \right) \\
& \Rightarrow \dfrac{0-0}{4}+\dfrac{\pi }{2} \\
& \Rightarrow \dfrac{\pi }{2}sq\ units \\
\end{align}\]
Now, we can see that the area of both \[{{\sin }^{2}}x\ and\ {{\cos }^{2}}x\] is \[\dfrac{\pi }{2}\] between \[0\ to\ \pi \]. Hence, their area is the same.
Note: It is important to note that we have used the trigonometric identity that $\cos 2x=1-2{{\cos }^{2}}x$ to solve the integral. Also, we have used the trigonometric identity that $\sin 2\pi =0$ and sin 0 = 0 to further solve it.
Complete step-by-step answer:
Now, we will first draw the graph of $y={{\sin }^{2}}x\ and\ y={{\cos }^{2}}x$,
Now, we have to find the area of ${{\sin }^{2}}x$ between \[0\ to\ \pi \]. We know that the area under the curve is \[\int{f\left( x \right)dx}\].
\[\Rightarrow \int\limits_{0}^{\pi }{{{\sin }^{2}}xdx}\]
Now, we know the trigonometric identity that,
$\begin{align}
& \cos 2x=1-2{{\sin }^{2}}x \\
& \Rightarrow 1-\cos 2x=2{{\sin }^{2}}x \\
& \Rightarrow {{\sin }^{2}}x=\dfrac{1-\cos 2x}{2} \\
\end{align}$
Now, using this in integral we have,
\[\begin{align}
& \int\limits_{0}^{\pi }{\left( \dfrac{1-\cos 2x}{2} \right)} \\
& \Rightarrow \int\limits_{0}^{\pi }{\left( \dfrac{1}{2}-\dfrac{1}{2}\cos 2x \right)}dx \\
\end{align}\]
Now, we know that,
\[\begin{align}
& \int{\cos 2\theta =\dfrac{\sin 2\theta }{2}} \\
& \Rightarrow \left( \dfrac{1}{2}x-\dfrac{1}{2}\dfrac{\sin 2x}{2} \right)_{0}^{\pi } \\
& \Rightarrow \left. \dfrac{x}{2} \right|_{0}^{\pi }-\dfrac{1}{4}\left. \times \sin 2x \right|_{0}^{\pi } \\
& \Rightarrow \dfrac{\pi }{2}-\dfrac{1}{4}\left( \sin 2\pi -\sin 0 \right) \\
& \Rightarrow \dfrac{\pi }{2}-\dfrac{1}{4}\left( 0-0 \right) \\
& \Rightarrow \dfrac{\pi }{2}sq\ units \\
\end{align}\]
Now, similarly for the area of \[{{\cos }^{2}}x\] we have,
\[\Rightarrow \int\limits_{0}^{\pi }{{{\cos }^{2}}xdx}\]
Now, we know that
\[\begin{align}
& \cos 2x=2{{\cos }^{2}}x-1 \\
& \dfrac{\cos 2x+1}{2}={{\cos }^{2}}x \\
\end{align}\]
So, using this we have,
\[\begin{align}
& \int\limits_{0}^{\pi }{\left( \dfrac{\cos 2x+1}{2} \right)}dx \\
& \Rightarrow \int\limits_{0}^{\pi }{\left( \dfrac{\cos 2x}{2}+\dfrac{1}{2} \right)}dx \\
& \Rightarrow \left( \dfrac{\sin 2x}{4}+\dfrac{1}{2}x \right)_{0}^{\pi } \\
& \Rightarrow \dfrac{\sin \left( 2\pi \right)-\sin \left( 0 \right)}{2}+\dfrac{1}{2}\left( \pi -0 \right) \\
& \Rightarrow \dfrac{0-0}{4}+\dfrac{\pi }{2} \\
& \Rightarrow \dfrac{\pi }{2}sq\ units \\
\end{align}\]
Now, we can see that the area of both \[{{\sin }^{2}}x\ and\ {{\cos }^{2}}x\] is \[\dfrac{\pi }{2}\] between \[0\ to\ \pi \]. Hence, their area is the same.
Note: It is important to note that we have used the trigonometric identity that $\cos 2x=1-2{{\cos }^{2}}x$ to solve the integral. Also, we have used the trigonometric identity that $\sin 2\pi =0$ and sin 0 = 0 to further solve it.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

