
How do you combine like terms in ?
Answer
472.5k+ views
Hint: This is a linear expression in one variable and all the terms have one variable . First we have to solve the brackets. We know that the combination of two same signs will give positive and the combination of two opposite signs will give us negative sign while opening brackets. After opening the brackets, combine the positive terms and negative terms separately and find its value.
Complete step by step answer:
According to the question, we have to show the method to combine like terms in the given algebraic expression.
The algebraic expression is .
Let the value of this expression is . Then we have:
First we will open the brackets. We know that the combination of two same signs will give positive and the combination of two opposite signs will give us negative sign while opening brackets. Applying this rule for the above expression, we’ll get:
As we can see that only the first term is positive and all the other terms are negative. Combining positive terms together and negative terms together and solving them separately, we‘ll get:
Therefore the final value of the expression is . This is the method how we combine the like terms and find the values of such expressions.
Note: If in an algebraic expression:
(1) If the combination of variables in two terms is different then we can’t add or subtract their coefficient to bring it in one term. For example, is the simplest form of this expression and we can’t add the coefficients of the two terms because they have different variables.
(2) If the variables are same in both the terms but the degree is different then also we can’t add or subtract their coefficients. For example, is the simplest form of this expression and we can’t add the coefficients of the two terms because in the first term, the degree of variable is 2 but it 1 in the second term.
Complete step by step answer:
According to the question, we have to show the method to combine like terms in the given algebraic expression.
The algebraic expression is
Let the value of this expression is
First we will open the brackets. We know that the combination of two same signs will give positive and the combination of two opposite signs will give us negative sign while opening brackets. Applying this rule for the above expression, we’ll get:
As we can see that only the first term is positive and all the other terms are negative. Combining positive terms together and negative terms together and solving them separately, we‘ll get:
Therefore the final value of the expression
Note: If in an algebraic expression:
(1) If the combination of variables in two terms is different then we can’t add or subtract their coefficient to bring it in one term. For example,
(2) If the variables are same in both the terms but the degree is different then also we can’t add or subtract their coefficients. For example,
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
School Full course for CBSE students
₹41,848 per year
Recently Updated Pages
Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
What is the southernmost point of the Indian Union class 8 social science CBSE

How many ounces are in 500 mL class 8 maths CBSE

Name the states through which the Tropic of Cancer class 8 social science CBSE

List some examples of Rabi and Kharif crops class 8 biology CBSE

How many ten lakhs are in one crore-class-8-maths-CBSE

Explain land use pattern in India and why has the land class 8 social science CBSE
