
What is the coefficient of \[{x^n}\] in the expansion of \[\dfrac{1}{{(1 - x)(1 - 2x)(1 - 3x)}}\].
(a). \[\dfrac{1}{2}({2^{n + 2}} - {3^{n + 3}} + 1)\]
(b). \[\dfrac{1}{2}({3^{n + 2}} - {2^{n + 3}} + 1)\]
(c). \[\dfrac{1}{2}({2^{n + 3}} - {3^{n + 2}} + 1)\]
(d). None of these
Answer
519.6k+ views
Hint: Use the binomial expansion \[{(1 - x)^{ - 1}} = 1 + x + {x^2} + .....\] to simplify the terms in the denominator and then find the coefficients of \[{x^n}\] in the expansion. Use the sum of geometric series \[\dfrac{{a(1 - {r^n})}}{{1 - r}}\] to simplify the expression.
Complete step-by-step answer:
We need to find the coefficient of \[{x^n}\] in the expansion of \[\dfrac{1}{{(1 - x)(1 - 2x)(1 - 3x)}}\].
We know that \[\dfrac{1}{{(1 - x)(1 - 2x)(1 - 3x)}}\] can be written as \[{(1 - x)^{ - 1}}{(1 - 2x)^{ - 1}}{(1 - 3x)^{ - 1}}\].
The formula for binomial expansion for negative exponents is given as follows:
\[{(1 - x)^{ - 1}} = 1 + x + {x^2} + .....\]
Using this formula, we have:
\[\dfrac{1}{{(1 - x)(1 - 2x)(1 - 3x)}} = (1 + x + ... + {x^n} + ...)(1 + 2x + ... + {(2x)^n} + ...)(1 + 3x + ... + {(3x)^n} + ...)\]
Now, multiplying, we find only the coefficient of \[{x^n}\].
Taking 1 from the first bracket and then expressing the multiplication of next two brackets we have:
\[{C_0} = {3^n} + {2.3^{n - 1}} + .... + {2^{n - 1}}.3 + {2^n}\]
Taking the coefficient of x in the first bracket and then expressing the multiplication of next two brackets we have:
\[{C_1} = {3^{n - 1}} + {2.3^{n - 2}} + .... + {2^{n - 2}}.3 + {2^{n - 1}}\]
Similarly, we have until the coefficient of \[{x^n}\] in the bracket, which is 1.
\[{C_n} = 1\]
For \[{C_0}\], we take \[{3^n}\] common and simplify the expression using the geometric sum as \[\dfrac{{a(1 - {r^n})}}{{1 - r}}\].
\[{C_0} = {3^n}\left( {1 + \dfrac{2}{3} + .... + {{\left( {\dfrac{2}{3}} \right)}^{n - 1}} + {{\left( {\dfrac{2}{3}} \right)}^n}} \right)\]
\[{C_0} = {3^n}\left( {\dfrac{{1 - {{\left( {\dfrac{2}{3}} \right)}^{n + 1}}}}{{1 - \dfrac{2}{3}}}} \right)\]
Simplifying, we have:
\[{C_0} = {3^{n + 1}}\left( {1 - {{\left( {\dfrac{2}{3}} \right)}^{n + 1}}} \right)\]
\[{C_0} = {3^{n + 1}} - {2^{n + 1}}\]
Similarly, for the \[{C_1}\] term, we have:
\[{C_1} = {3^{n - 1}}\left( {1 + \dfrac{2}{3} + .... + {{\left( {\dfrac{2}{3}} \right)}^{n - 2}} + {{\left( {\dfrac{2}{3}} \right)}^{n - 1}}} \right)\]
\[{C_1} = {3^{n - 1}}\left( {\dfrac{{1 - {{\left( {\dfrac{2}{3}} \right)}^n}}}{{1 - \dfrac{2}{3}}}} \right)\]
Simplifying, we have:
\[{C_1} = {3^n}\left( {1 - {{\left( {\dfrac{2}{3}} \right)}^n}} \right)\]
\[{C_1} = {3^n} - {2^n}\]
Adding all the \[{C_i}\] terms we have:
\[\sum\limits_{i = 0}^n {{C_i} = {3^{n + 1}} - {2^{n + 1}}} + {3^n} - {2^n} + ...... + 3 - 2\]
Grouping terms together, we have:
\[C = (3 + {3^2} + ........ + {3^n} + {3^{n + 1}}) - (2 + {2^2} + ........ + {2^n} + {2^{n + 1}})\]
Using the sum of geometric terms, we have:
\[C = \dfrac{{3(1 - {3^{n + 1}})}}{{1 - 3}} - \dfrac{{2(1 - {2^{n + 1}})}}{{1 - 2}}\]
Simplifying, we get:
\[C = \dfrac{{3({3^{n + 1}} - 1)}}{2} + 2(1 - {2^{n + 1}})\]
\[C = \dfrac{1}{2}\left[ {{3^{n + 2}} - 3 + 4 - {2^{n + 3}}} \right]\]
\[C = \dfrac{1}{2}\left[ {{3^{n + 2}} - {2^{n + 3}} + 1} \right]\]
Hence, the correct answer is option (b).
Note: You might make a mistake when evaluating the sum of geometric terms. The sum for n terms is \[\dfrac{{a(1 - {r^n})}}{{1 - r}}\], the expression \[1 + \dfrac{2}{3} + .... + {\left( {\dfrac{2}{3}} \right)^{n - 1}} + {\left( {\dfrac{2}{3}} \right)^n}\] has (n+1) terms. Hence, evaluate accordingly.
Complete step-by-step answer:
We need to find the coefficient of \[{x^n}\] in the expansion of \[\dfrac{1}{{(1 - x)(1 - 2x)(1 - 3x)}}\].
We know that \[\dfrac{1}{{(1 - x)(1 - 2x)(1 - 3x)}}\] can be written as \[{(1 - x)^{ - 1}}{(1 - 2x)^{ - 1}}{(1 - 3x)^{ - 1}}\].
The formula for binomial expansion for negative exponents is given as follows:
\[{(1 - x)^{ - 1}} = 1 + x + {x^2} + .....\]
Using this formula, we have:
\[\dfrac{1}{{(1 - x)(1 - 2x)(1 - 3x)}} = (1 + x + ... + {x^n} + ...)(1 + 2x + ... + {(2x)^n} + ...)(1 + 3x + ... + {(3x)^n} + ...)\]
Now, multiplying, we find only the coefficient of \[{x^n}\].
Taking 1 from the first bracket and then expressing the multiplication of next two brackets we have:
\[{C_0} = {3^n} + {2.3^{n - 1}} + .... + {2^{n - 1}}.3 + {2^n}\]
Taking the coefficient of x in the first bracket and then expressing the multiplication of next two brackets we have:
\[{C_1} = {3^{n - 1}} + {2.3^{n - 2}} + .... + {2^{n - 2}}.3 + {2^{n - 1}}\]
Similarly, we have until the coefficient of \[{x^n}\] in the bracket, which is 1.
\[{C_n} = 1\]
For \[{C_0}\], we take \[{3^n}\] common and simplify the expression using the geometric sum as \[\dfrac{{a(1 - {r^n})}}{{1 - r}}\].
\[{C_0} = {3^n}\left( {1 + \dfrac{2}{3} + .... + {{\left( {\dfrac{2}{3}} \right)}^{n - 1}} + {{\left( {\dfrac{2}{3}} \right)}^n}} \right)\]
\[{C_0} = {3^n}\left( {\dfrac{{1 - {{\left( {\dfrac{2}{3}} \right)}^{n + 1}}}}{{1 - \dfrac{2}{3}}}} \right)\]
Simplifying, we have:
\[{C_0} = {3^{n + 1}}\left( {1 - {{\left( {\dfrac{2}{3}} \right)}^{n + 1}}} \right)\]
\[{C_0} = {3^{n + 1}} - {2^{n + 1}}\]
Similarly, for the \[{C_1}\] term, we have:
\[{C_1} = {3^{n - 1}}\left( {1 + \dfrac{2}{3} + .... + {{\left( {\dfrac{2}{3}} \right)}^{n - 2}} + {{\left( {\dfrac{2}{3}} \right)}^{n - 1}}} \right)\]
\[{C_1} = {3^{n - 1}}\left( {\dfrac{{1 - {{\left( {\dfrac{2}{3}} \right)}^n}}}{{1 - \dfrac{2}{3}}}} \right)\]
Simplifying, we have:
\[{C_1} = {3^n}\left( {1 - {{\left( {\dfrac{2}{3}} \right)}^n}} \right)\]
\[{C_1} = {3^n} - {2^n}\]
Adding all the \[{C_i}\] terms we have:
\[\sum\limits_{i = 0}^n {{C_i} = {3^{n + 1}} - {2^{n + 1}}} + {3^n} - {2^n} + ...... + 3 - 2\]
Grouping terms together, we have:
\[C = (3 + {3^2} + ........ + {3^n} + {3^{n + 1}}) - (2 + {2^2} + ........ + {2^n} + {2^{n + 1}})\]
Using the sum of geometric terms, we have:
\[C = \dfrac{{3(1 - {3^{n + 1}})}}{{1 - 3}} - \dfrac{{2(1 - {2^{n + 1}})}}{{1 - 2}}\]
Simplifying, we get:
\[C = \dfrac{{3({3^{n + 1}} - 1)}}{2} + 2(1 - {2^{n + 1}})\]
\[C = \dfrac{1}{2}\left[ {{3^{n + 2}} - 3 + 4 - {2^{n + 3}}} \right]\]
\[C = \dfrac{1}{2}\left[ {{3^{n + 2}} - {2^{n + 3}} + 1} \right]\]
Hence, the correct answer is option (b).
Note: You might make a mistake when evaluating the sum of geometric terms. The sum for n terms is \[\dfrac{{a(1 - {r^n})}}{{1 - r}}\], the expression \[1 + \dfrac{2}{3} + .... + {\left( {\dfrac{2}{3}} \right)^{n - 1}} + {\left( {\dfrac{2}{3}} \right)^n}\] has (n+1) terms. Hence, evaluate accordingly.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
