
What is the coefficient of \[{x^n}\] in the expansion of \[\dfrac{1}{{(1 - x)(1 - 2x)(1 - 3x)}}\].
(a). \[\dfrac{1}{2}({2^{n + 2}} - {3^{n + 3}} + 1)\]
(b). \[\dfrac{1}{2}({3^{n + 2}} - {2^{n + 3}} + 1)\]
(c). \[\dfrac{1}{2}({2^{n + 3}} - {3^{n + 2}} + 1)\]
(d). None of these
Answer
600.9k+ views
Hint: Use the binomial expansion \[{(1 - x)^{ - 1}} = 1 + x + {x^2} + .....\] to simplify the terms in the denominator and then find the coefficients of \[{x^n}\] in the expansion. Use the sum of geometric series \[\dfrac{{a(1 - {r^n})}}{{1 - r}}\] to simplify the expression.
Complete step-by-step answer:
We need to find the coefficient of \[{x^n}\] in the expansion of \[\dfrac{1}{{(1 - x)(1 - 2x)(1 - 3x)}}\].
We know that \[\dfrac{1}{{(1 - x)(1 - 2x)(1 - 3x)}}\] can be written as \[{(1 - x)^{ - 1}}{(1 - 2x)^{ - 1}}{(1 - 3x)^{ - 1}}\].
The formula for binomial expansion for negative exponents is given as follows:
\[{(1 - x)^{ - 1}} = 1 + x + {x^2} + .....\]
Using this formula, we have:
\[\dfrac{1}{{(1 - x)(1 - 2x)(1 - 3x)}} = (1 + x + ... + {x^n} + ...)(1 + 2x + ... + {(2x)^n} + ...)(1 + 3x + ... + {(3x)^n} + ...)\]
Now, multiplying, we find only the coefficient of \[{x^n}\].
Taking 1 from the first bracket and then expressing the multiplication of next two brackets we have:
\[{C_0} = {3^n} + {2.3^{n - 1}} + .... + {2^{n - 1}}.3 + {2^n}\]
Taking the coefficient of x in the first bracket and then expressing the multiplication of next two brackets we have:
\[{C_1} = {3^{n - 1}} + {2.3^{n - 2}} + .... + {2^{n - 2}}.3 + {2^{n - 1}}\]
Similarly, we have until the coefficient of \[{x^n}\] in the bracket, which is 1.
\[{C_n} = 1\]
For \[{C_0}\], we take \[{3^n}\] common and simplify the expression using the geometric sum as \[\dfrac{{a(1 - {r^n})}}{{1 - r}}\].
\[{C_0} = {3^n}\left( {1 + \dfrac{2}{3} + .... + {{\left( {\dfrac{2}{3}} \right)}^{n - 1}} + {{\left( {\dfrac{2}{3}} \right)}^n}} \right)\]
\[{C_0} = {3^n}\left( {\dfrac{{1 - {{\left( {\dfrac{2}{3}} \right)}^{n + 1}}}}{{1 - \dfrac{2}{3}}}} \right)\]
Simplifying, we have:
\[{C_0} = {3^{n + 1}}\left( {1 - {{\left( {\dfrac{2}{3}} \right)}^{n + 1}}} \right)\]
\[{C_0} = {3^{n + 1}} - {2^{n + 1}}\]
Similarly, for the \[{C_1}\] term, we have:
\[{C_1} = {3^{n - 1}}\left( {1 + \dfrac{2}{3} + .... + {{\left( {\dfrac{2}{3}} \right)}^{n - 2}} + {{\left( {\dfrac{2}{3}} \right)}^{n - 1}}} \right)\]
\[{C_1} = {3^{n - 1}}\left( {\dfrac{{1 - {{\left( {\dfrac{2}{3}} \right)}^n}}}{{1 - \dfrac{2}{3}}}} \right)\]
Simplifying, we have:
\[{C_1} = {3^n}\left( {1 - {{\left( {\dfrac{2}{3}} \right)}^n}} \right)\]
\[{C_1} = {3^n} - {2^n}\]
Adding all the \[{C_i}\] terms we have:
\[\sum\limits_{i = 0}^n {{C_i} = {3^{n + 1}} - {2^{n + 1}}} + {3^n} - {2^n} + ...... + 3 - 2\]
Grouping terms together, we have:
\[C = (3 + {3^2} + ........ + {3^n} + {3^{n + 1}}) - (2 + {2^2} + ........ + {2^n} + {2^{n + 1}})\]
Using the sum of geometric terms, we have:
\[C = \dfrac{{3(1 - {3^{n + 1}})}}{{1 - 3}} - \dfrac{{2(1 - {2^{n + 1}})}}{{1 - 2}}\]
Simplifying, we get:
\[C = \dfrac{{3({3^{n + 1}} - 1)}}{2} + 2(1 - {2^{n + 1}})\]
\[C = \dfrac{1}{2}\left[ {{3^{n + 2}} - 3 + 4 - {2^{n + 3}}} \right]\]
\[C = \dfrac{1}{2}\left[ {{3^{n + 2}} - {2^{n + 3}} + 1} \right]\]
Hence, the correct answer is option (b).
Note: You might make a mistake when evaluating the sum of geometric terms. The sum for n terms is \[\dfrac{{a(1 - {r^n})}}{{1 - r}}\], the expression \[1 + \dfrac{2}{3} + .... + {\left( {\dfrac{2}{3}} \right)^{n - 1}} + {\left( {\dfrac{2}{3}} \right)^n}\] has (n+1) terms. Hence, evaluate accordingly.
Complete step-by-step answer:
We need to find the coefficient of \[{x^n}\] in the expansion of \[\dfrac{1}{{(1 - x)(1 - 2x)(1 - 3x)}}\].
We know that \[\dfrac{1}{{(1 - x)(1 - 2x)(1 - 3x)}}\] can be written as \[{(1 - x)^{ - 1}}{(1 - 2x)^{ - 1}}{(1 - 3x)^{ - 1}}\].
The formula for binomial expansion for negative exponents is given as follows:
\[{(1 - x)^{ - 1}} = 1 + x + {x^2} + .....\]
Using this formula, we have:
\[\dfrac{1}{{(1 - x)(1 - 2x)(1 - 3x)}} = (1 + x + ... + {x^n} + ...)(1 + 2x + ... + {(2x)^n} + ...)(1 + 3x + ... + {(3x)^n} + ...)\]
Now, multiplying, we find only the coefficient of \[{x^n}\].
Taking 1 from the first bracket and then expressing the multiplication of next two brackets we have:
\[{C_0} = {3^n} + {2.3^{n - 1}} + .... + {2^{n - 1}}.3 + {2^n}\]
Taking the coefficient of x in the first bracket and then expressing the multiplication of next two brackets we have:
\[{C_1} = {3^{n - 1}} + {2.3^{n - 2}} + .... + {2^{n - 2}}.3 + {2^{n - 1}}\]
Similarly, we have until the coefficient of \[{x^n}\] in the bracket, which is 1.
\[{C_n} = 1\]
For \[{C_0}\], we take \[{3^n}\] common and simplify the expression using the geometric sum as \[\dfrac{{a(1 - {r^n})}}{{1 - r}}\].
\[{C_0} = {3^n}\left( {1 + \dfrac{2}{3} + .... + {{\left( {\dfrac{2}{3}} \right)}^{n - 1}} + {{\left( {\dfrac{2}{3}} \right)}^n}} \right)\]
\[{C_0} = {3^n}\left( {\dfrac{{1 - {{\left( {\dfrac{2}{3}} \right)}^{n + 1}}}}{{1 - \dfrac{2}{3}}}} \right)\]
Simplifying, we have:
\[{C_0} = {3^{n + 1}}\left( {1 - {{\left( {\dfrac{2}{3}} \right)}^{n + 1}}} \right)\]
\[{C_0} = {3^{n + 1}} - {2^{n + 1}}\]
Similarly, for the \[{C_1}\] term, we have:
\[{C_1} = {3^{n - 1}}\left( {1 + \dfrac{2}{3} + .... + {{\left( {\dfrac{2}{3}} \right)}^{n - 2}} + {{\left( {\dfrac{2}{3}} \right)}^{n - 1}}} \right)\]
\[{C_1} = {3^{n - 1}}\left( {\dfrac{{1 - {{\left( {\dfrac{2}{3}} \right)}^n}}}{{1 - \dfrac{2}{3}}}} \right)\]
Simplifying, we have:
\[{C_1} = {3^n}\left( {1 - {{\left( {\dfrac{2}{3}} \right)}^n}} \right)\]
\[{C_1} = {3^n} - {2^n}\]
Adding all the \[{C_i}\] terms we have:
\[\sum\limits_{i = 0}^n {{C_i} = {3^{n + 1}} - {2^{n + 1}}} + {3^n} - {2^n} + ...... + 3 - 2\]
Grouping terms together, we have:
\[C = (3 + {3^2} + ........ + {3^n} + {3^{n + 1}}) - (2 + {2^2} + ........ + {2^n} + {2^{n + 1}})\]
Using the sum of geometric terms, we have:
\[C = \dfrac{{3(1 - {3^{n + 1}})}}{{1 - 3}} - \dfrac{{2(1 - {2^{n + 1}})}}{{1 - 2}}\]
Simplifying, we get:
\[C = \dfrac{{3({3^{n + 1}} - 1)}}{2} + 2(1 - {2^{n + 1}})\]
\[C = \dfrac{1}{2}\left[ {{3^{n + 2}} - 3 + 4 - {2^{n + 3}}} \right]\]
\[C = \dfrac{1}{2}\left[ {{3^{n + 2}} - {2^{n + 3}} + 1} \right]\]
Hence, the correct answer is option (b).
Note: You might make a mistake when evaluating the sum of geometric terms. The sum for n terms is \[\dfrac{{a(1 - {r^n})}}{{1 - r}}\], the expression \[1 + \dfrac{2}{3} + .... + {\left( {\dfrac{2}{3}} \right)^{n - 1}} + {\left( {\dfrac{2}{3}} \right)^n}\] has (n+1) terms. Hence, evaluate accordingly.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

