
Choose the correct value for $x$ from the given options below if $x$ satisfies the inverse trigonometric equation $\sin \left( {{{\cot }^{ - 1}}\left( {1 + x} \right)} \right) = \cos \left( {{{\tan }^{ - 1}}x} \right)$.
1) $\dfrac{1}{2}$
2) $1$
3) $0$
4) $\dfrac{{ - 1}}{2}$
Answer
487.5k+ views
Hint: We have given an Inverse trigonometric equation to solve. First, we take the Inverse trigonometric expressions and name them accordingly. And then we find the respective trigonometric ratios and equate them to solve. Finally, we end up with an algebraic equation to solve. We have to solve the algebraic equation to find the value of $x$.
Complete step-by-step answer:
Given an Inverse trigonometric equation to solve, that is
$\sin \left( {{{\cot }^{ - 1}}\left( {1 + x} \right)} \right) = \cos \left( {{{\tan }^{ - 1}}x} \right)$,
Let us name the inverse trigonometric ratios in the equation first.
${\cot ^{ - 1}}\left( {1 + x} \right) = \theta $ , ${\tan ^{ - 1}}x = \varphi $
$ \Rightarrow \cot \theta = 1 + x,\tan \varphi = x$
Now let us convert $\cot $ratio into $\tan $.
$ \Rightarrow \tan \theta = \dfrac{1}{{1 + x}},\tan \varphi = x$ ,
Now let us convert both $\tan $ ratios into $\sin ,\cos $ ratios respectively.
$ \Rightarrow \sin \theta = \dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }},\cos \varphi = \dfrac{1}{{\sqrt {1 + {x^2}} }}$ ,
Now let us apply ${\sin ^{ - 1}},{\cos ^{ - 1}}$ to the above equations respectively.
$ \Rightarrow \theta = {\sin ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }}} \right),\varphi = {\cos ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right)$ ,
Now let us replace the names with the original names that are,
$ \Rightarrow {\cot ^{ - 1}}\left( {1 + x} \right) = {\sin ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }}} \right),{\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right)$ ,
Now let us replace the above values in the given inverse trigonometric equation. We get,
$ \Rightarrow \sin \left( {{{\sin }^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }}} \right)} \right) = \cos \left( {{{\cos }^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right)} \right)$ ,
We know that the function $\sin ,{\sin ^{ - 1}}$and $\cos ,{\cos ^{ - 1}}$ are pairs of inverse functions. So we get,
$ \Rightarrow \dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }} = \dfrac{1}{{\sqrt {1 + {x^2}} }}$
So finally, we arrived at an algebraic equation.
Now to find the value of $x$ we need to solve this algebraic equation.
Let us reciprocal the given equation, we get
$ \Rightarrow \sqrt {1 + {{\left( {1 + x} \right)}^2}} = \sqrt {1 + {x^2}} $,
Now let us square on both sides of the equation, we get
$ \Rightarrow 1 + {\left( {1 + x} \right)^2} = 1 + {x^2}$,
Let us subtract $1$ on both sides, we get
$ \Rightarrow {\left( {1 + x} \right)^2} = {x^2}$
Now expand,
$ \Rightarrow 1 + {x^2} + 2x = {x^2}$
$ \Rightarrow 1 + 2x = 0$
On further simplification, we get
$ \Rightarrow x = \dfrac{{ - 1}}{2}$
Therefore the correct option is 4.
So, the correct answer is “Option 4”.
Note: This is a nice problem. At first, when we see the problem we try to perform some inverse trigonometric functions on the equation and find it clueless. That is the wrong method of solving this problem. This one way of solving this problem. The other way is to solve by using only trigonometric ratios, after we name the inverse trigonometric ratios we can find a relation from the given equation also, by using that equation we can solve the equations directly and end up with the same answer.
Complete step-by-step answer:
Given an Inverse trigonometric equation to solve, that is
$\sin \left( {{{\cot }^{ - 1}}\left( {1 + x} \right)} \right) = \cos \left( {{{\tan }^{ - 1}}x} \right)$,
Let us name the inverse trigonometric ratios in the equation first.
${\cot ^{ - 1}}\left( {1 + x} \right) = \theta $ , ${\tan ^{ - 1}}x = \varphi $
$ \Rightarrow \cot \theta = 1 + x,\tan \varphi = x$
Now let us convert $\cot $ratio into $\tan $.
$ \Rightarrow \tan \theta = \dfrac{1}{{1 + x}},\tan \varphi = x$ ,
Now let us convert both $\tan $ ratios into $\sin ,\cos $ ratios respectively.
$ \Rightarrow \sin \theta = \dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }},\cos \varphi = \dfrac{1}{{\sqrt {1 + {x^2}} }}$ ,
Now let us apply ${\sin ^{ - 1}},{\cos ^{ - 1}}$ to the above equations respectively.
$ \Rightarrow \theta = {\sin ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }}} \right),\varphi = {\cos ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right)$ ,
Now let us replace the names with the original names that are,
$ \Rightarrow {\cot ^{ - 1}}\left( {1 + x} \right) = {\sin ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }}} \right),{\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right)$ ,
Now let us replace the above values in the given inverse trigonometric equation. We get,
$ \Rightarrow \sin \left( {{{\sin }^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }}} \right)} \right) = \cos \left( {{{\cos }^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right)} \right)$ ,
We know that the function $\sin ,{\sin ^{ - 1}}$and $\cos ,{\cos ^{ - 1}}$ are pairs of inverse functions. So we get,
$ \Rightarrow \dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }} = \dfrac{1}{{\sqrt {1 + {x^2}} }}$
So finally, we arrived at an algebraic equation.
Now to find the value of $x$ we need to solve this algebraic equation.
Let us reciprocal the given equation, we get
$ \Rightarrow \sqrt {1 + {{\left( {1 + x} \right)}^2}} = \sqrt {1 + {x^2}} $,
Now let us square on both sides of the equation, we get
$ \Rightarrow 1 + {\left( {1 + x} \right)^2} = 1 + {x^2}$,
Let us subtract $1$ on both sides, we get
$ \Rightarrow {\left( {1 + x} \right)^2} = {x^2}$
Now expand,
$ \Rightarrow 1 + {x^2} + 2x = {x^2}$
$ \Rightarrow 1 + 2x = 0$
On further simplification, we get
$ \Rightarrow x = \dfrac{{ - 1}}{2}$
Therefore the correct option is 4.
So, the correct answer is “Option 4”.
Note: This is a nice problem. At first, when we see the problem we try to perform some inverse trigonometric functions on the equation and find it clueless. That is the wrong method of solving this problem. This one way of solving this problem. The other way is to solve by using only trigonometric ratios, after we name the inverse trigonometric ratios we can find a relation from the given equation also, by using that equation we can solve the equations directly and end up with the same answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

