
Choose the correct option. Justify your choice.
$\left( {1 + \tan \theta + \sec \theta } \right)\left( {1 + \cot \theta - \cos ec\theta } \right) = $
A) $0$
B) $1$
C) $2$
D)$ - 1$
Answer
574.5k+ views
Hint:In order to solve the question, we have to write all the terms such as $\tan \theta $ , $\sec \theta $ ,$\cot \theta $ and $\cos ec\theta $ in terms of $\sin \theta $ and $\cos \theta $ .Use the algebraic identity $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ and trigonometric identity ${\sin ^2}\theta + {\cos ^2}\theta = 1$, simplify the equation and get the answer.
Complete step-by-step answer:
Let consider $T = \left( {1 + \tan \theta + \sec \theta } \right)\left( {1 + \cot \theta - \cos ec\theta } \right)$
Now we know that,
$
\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}{\text{ , sec}}\theta {\text{ = }}\dfrac{1}{{\cos \theta }} \\
\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}{\text{ , }}\cos ec\theta = \dfrac{1}{{\sin \theta }} \\
$
Using all the conversions we get,
$T = \left( {1 + \dfrac{{\sin \theta }}{{\cos \theta }} + \dfrac{1}{{\cos \theta }}} \right)\left( {1 + \dfrac{{\cos \theta }}{{\sin \theta }} - \dfrac{1}{{\sin \theta }}} \right)$
Now, we need to simplify this equation
$
\Rightarrow T = \left( {\dfrac{{\cos \theta + \sin \theta + 1}}{{\cos \theta }}} \right)\left( {\dfrac{{\sin \theta + \cos \theta - 1}}{{\sin \theta }}} \right) \\
\Rightarrow T = \dfrac{{\left( {\sin \theta + \cos \theta + 1} \right)\left( {\sin \theta + \cos \theta - 1} \right)}}{{\sin \theta \cos \theta }} \\
$
Now if you carefully observe, you may see that we can use the identity $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ where $a = \sin \theta + \cos \theta $ and $b = 1$
$ \Rightarrow T = \dfrac{{{{\left( {\sin \theta + \cos \theta } \right)}^2} - {{\left( 1 \right)}^2}}}{{\sin \theta \cos \theta }}$
Using the identity ${\left( {a + b} \right)^2} = {a^2} + {b^2}+2ab$ , where $a = \sin \theta $ and $b = \cos \theta $ , we get
$T = \dfrac{{{{\sin }^2}\theta + {{\cos }^2}\theta + 2\sin \theta \cos \theta - 1}}{{\sin \theta \cos \theta }}$
Using the identity ${\sin ^2}\theta + {\cos ^2}\theta = 1$ , we get
$
T = \dfrac{{1 + 2\sin \theta \cos \theta - 1}}{{\sin \theta \cos \theta }} \\
\Rightarrow T = \dfrac{{2\sin \theta \cos \theta }}{{\sin \theta \cos \theta }} = 2 \\
\Rightarrow T = 2 \\
$
So, the correct answer is “Option C”.
Note:The first approach that comes to our mind by watching the equation is to open the brackets and multiply the terms. This is a very good approach but will create a lot of terms and increase the chances of mistakes. So, to avoid that we will convert every term into $\sin \theta $ and $\cos \theta $ at first.This question can also be solved by using the triangular trigonometric identities such as $\tan \theta = \dfrac{P}{B}{\text{ , cot}}\theta {\text{ = }}\dfrac{B}{P}{\text{ , }}\sec \theta = \dfrac{H}{B}{\text{ , }}\cos ec\theta = \dfrac{H}{P}$ , where $P$ is the perpendicular, $B$ is the base and $H$ is the hypotenuse. Another property is also used ${P^2} + {B^2} = {H^2}$ for this method.
Complete step-by-step answer:
Let consider $T = \left( {1 + \tan \theta + \sec \theta } \right)\left( {1 + \cot \theta - \cos ec\theta } \right)$
Now we know that,
$
\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}{\text{ , sec}}\theta {\text{ = }}\dfrac{1}{{\cos \theta }} \\
\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}{\text{ , }}\cos ec\theta = \dfrac{1}{{\sin \theta }} \\
$
Using all the conversions we get,
$T = \left( {1 + \dfrac{{\sin \theta }}{{\cos \theta }} + \dfrac{1}{{\cos \theta }}} \right)\left( {1 + \dfrac{{\cos \theta }}{{\sin \theta }} - \dfrac{1}{{\sin \theta }}} \right)$
Now, we need to simplify this equation
$
\Rightarrow T = \left( {\dfrac{{\cos \theta + \sin \theta + 1}}{{\cos \theta }}} \right)\left( {\dfrac{{\sin \theta + \cos \theta - 1}}{{\sin \theta }}} \right) \\
\Rightarrow T = \dfrac{{\left( {\sin \theta + \cos \theta + 1} \right)\left( {\sin \theta + \cos \theta - 1} \right)}}{{\sin \theta \cos \theta }} \\
$
Now if you carefully observe, you may see that we can use the identity $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$ where $a = \sin \theta + \cos \theta $ and $b = 1$
$ \Rightarrow T = \dfrac{{{{\left( {\sin \theta + \cos \theta } \right)}^2} - {{\left( 1 \right)}^2}}}{{\sin \theta \cos \theta }}$
Using the identity ${\left( {a + b} \right)^2} = {a^2} + {b^2}+2ab$ , where $a = \sin \theta $ and $b = \cos \theta $ , we get
$T = \dfrac{{{{\sin }^2}\theta + {{\cos }^2}\theta + 2\sin \theta \cos \theta - 1}}{{\sin \theta \cos \theta }}$
Using the identity ${\sin ^2}\theta + {\cos ^2}\theta = 1$ , we get
$
T = \dfrac{{1 + 2\sin \theta \cos \theta - 1}}{{\sin \theta \cos \theta }} \\
\Rightarrow T = \dfrac{{2\sin \theta \cos \theta }}{{\sin \theta \cos \theta }} = 2 \\
\Rightarrow T = 2 \\
$
So, the correct answer is “Option C”.
Note:The first approach that comes to our mind by watching the equation is to open the brackets and multiply the terms. This is a very good approach but will create a lot of terms and increase the chances of mistakes. So, to avoid that we will convert every term into $\sin \theta $ and $\cos \theta $ at first.This question can also be solved by using the triangular trigonometric identities such as $\tan \theta = \dfrac{P}{B}{\text{ , cot}}\theta {\text{ = }}\dfrac{B}{P}{\text{ , }}\sec \theta = \dfrac{H}{B}{\text{ , }}\cos ec\theta = \dfrac{H}{P}$ , where $P$ is the perpendicular, $B$ is the base and $H$ is the hypotenuse. Another property is also used ${P^2} + {B^2} = {H^2}$ for this method.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

