
How do you change $0.244444444$ into fraction?
Answer
541.8k+ views
Hint: We know that fraction represents equal parts of a whole or a collection. When we divide a whole into equal parts, each part is a fraction of the whole. We will assume as x. Then we will compute 10x. Subtracting 10x and x, we will be able to get the value of x. It will give us the fraction form.
Complete step-by-step answer:
Now, the given question is $0.244444444$. This expression is in the decimal form. Actually the decimal is a fraction written in a special form. It means we can easily express the fraction in the decimal form. Here we have to calculate the fraction form of the given $0.244444444$.
Now let $x=0.244444444$ $..........\left( 1 \right)$
And now multiply the above expression with $10$, then we get
$\Rightarrow 10x=2.44444444$ $.....\left( 2 \right)$
Now subtracting the equation (1) from equation (2), then we get
$\begin{align}
& \Rightarrow 10x-x=2.44444444-0.244444444 \\
& \Rightarrow 9x=2.2 \\
\end{align}$
Now write the above $2.2$ in a mixed fraction we get,
$\Rightarrow 9x=2\dfrac{2}{10}$
Now by more simplifying we get
$\begin{align}
& \Rightarrow x=\dfrac{2}{9}+\dfrac{2}{90} \\
& \Rightarrow x=\dfrac{20+2}{90} \\
& \Rightarrow x=\dfrac{22}{90} \\
\end{align}$
Now by more simplifying we get$\Rightarrow x=\dfrac{11}{45}$
Hence we get the fraction form of the given expression $0.244444444$ which is as $\dfrac{11}{45}$ .
Note: We can also solve the above expression by another method.
As we know $0.24$ is less than $1$ so the continued fraction starts with $0+\dfrac{1}{0.2\overset{.}{\mathop{4}}\,}$
Now calculate $\dfrac{1}{0.2\overset{.}{\mathop{4}}\,}$ which is equal to $4.\overset{.}{\mathop{0}}\,\overset{.}{\mathop{9}}\,$
So our continued fraction looks like$0+\dfrac{1}{4+\dfrac{1}{...}}$
Now subtract $4$ from the above fraction and then calculate $\dfrac{1}{0.\overset{.}{\mathop{0}}\,\overset{.}{\mathop{9}}\,}=11$
Now we get our fraction terminates here so we can write
$\Rightarrow 0+\dfrac{1}{4+\dfrac{1}{11}}$
Now solving the above fraction we get
$\Rightarrow \dfrac{1}{\dfrac{44+1}{11}}=\dfrac{1}{\dfrac{45}{11}}=\dfrac{11}{45}$
Here we get the same answer as we solved above. The fraction form of the given decimal expression $0.244444444$ is $\dfrac{11}{45}$.
Complete step-by-step answer:
Now, the given question is $0.244444444$. This expression is in the decimal form. Actually the decimal is a fraction written in a special form. It means we can easily express the fraction in the decimal form. Here we have to calculate the fraction form of the given $0.244444444$.
Now let $x=0.244444444$ $..........\left( 1 \right)$
And now multiply the above expression with $10$, then we get
$\Rightarrow 10x=2.44444444$ $.....\left( 2 \right)$
Now subtracting the equation (1) from equation (2), then we get
$\begin{align}
& \Rightarrow 10x-x=2.44444444-0.244444444 \\
& \Rightarrow 9x=2.2 \\
\end{align}$
Now write the above $2.2$ in a mixed fraction we get,
$\Rightarrow 9x=2\dfrac{2}{10}$
Now by more simplifying we get
$\begin{align}
& \Rightarrow x=\dfrac{2}{9}+\dfrac{2}{90} \\
& \Rightarrow x=\dfrac{20+2}{90} \\
& \Rightarrow x=\dfrac{22}{90} \\
\end{align}$
Now by more simplifying we get$\Rightarrow x=\dfrac{11}{45}$
Hence we get the fraction form of the given expression $0.244444444$ which is as $\dfrac{11}{45}$ .
Note: We can also solve the above expression by another method.
As we know $0.24$ is less than $1$ so the continued fraction starts with $0+\dfrac{1}{0.2\overset{.}{\mathop{4}}\,}$
Now calculate $\dfrac{1}{0.2\overset{.}{\mathop{4}}\,}$ which is equal to $4.\overset{.}{\mathop{0}}\,\overset{.}{\mathop{9}}\,$
So our continued fraction looks like$0+\dfrac{1}{4+\dfrac{1}{...}}$
Now subtract $4$ from the above fraction and then calculate $\dfrac{1}{0.\overset{.}{\mathop{0}}\,\overset{.}{\mathop{9}}\,}=11$
Now we get our fraction terminates here so we can write
$\Rightarrow 0+\dfrac{1}{4+\dfrac{1}{11}}$
Now solving the above fraction we get
$\Rightarrow \dfrac{1}{\dfrac{44+1}{11}}=\dfrac{1}{\dfrac{45}{11}}=\dfrac{11}{45}$
Here we get the same answer as we solved above. The fraction form of the given decimal expression $0.244444444$ is $\dfrac{11}{45}$.
Recently Updated Pages
Master Class 7 English: Engaging Questions & Answers for Success

Master Class 7 Maths: Engaging Questions & Answers for Success

Master Class 7 Science: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Trending doubts
What are the factors of 100 class 7 maths CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE

What were the major teachings of Baba Guru Nanak class 7 social science CBSE

Write a summary of the poem the quality of mercy by class 7 english CBSE

Find the largest number which divides 615 and 963 leaving class 7 maths CBSE


