
What is the Cartesian form of $ \left( {0,\pi } \right) $ ?
Answer
521.4k+ views
Hint: The given form is in polar form. The general polar form is $ \left( {r,\theta } \right) $ . Hence, $ r $ will be equal to 0 and $ \theta $ will be equal to $ \pi $ . Now, to convert polar form into Cartesian form, we will be using the formula
$ x = r \times \cos \theta $ and $ y = r \times \sin \theta $ . Using these formulas, we will get the Cartesian coordinates of the given polar coordinates.
Complete step by step solution:
In this question, we have to find the Cartesian form of $ \left( {0,\pi } \right) $ .
The given form is in polar form.
First of all, what are Cartesian forms and polar forms?
Cartesian form:
Cartesian coordinates are used to mark how far along and how far up a point is.
Cartesian coordinates are represented by $ \left( {x,y} \right) $ .
Polar form:
Polar coordinates are used to mark how far away and at what angle a point is.
Polar coordinates are represented by $ \left( {r,\theta } \right) $ , where $ r $ is the distance and $ \theta $ is the angle.
Conversion of polar coordinates $ \left( {r,\theta } \right) $ to Cartesian coordinates $ \left( {x,y} \right) $ :
$ \to x = r \times \cos \theta $ .
$ \to y = r \times \sin \theta $ .
In our question, polar coordinates are $ \left( {0,\pi } \right) $ . Therefore,
$ r = 0 $ and $ \theta = \pi $ .
Therefore, Cartesian coordinates will be
$
\to x = 0 \times \cos \pi \\
\to x = 0 \;
$
And,
$
\to y = 0 \times \sin \pi \\
\to y = 0 \;
$
Therefore, $ \left( {0,0} \right) $ will be our Cartesian form.
Hence, we have converted $ \left( {0,\pi } \right) $ polar form into $ \left( {0,0} \right) $ Cartesian form.
So, the correct answer is “{0,0}”.
Note: Conversion of Cartesian coordinates $ \left( {x,y} \right) $ to polar coordinates $ \left( {r,\theta } \right) $ :
Cartesian coordinates can be converted to polar coordinates using the formula
$ \to r = \sqrt {{x^2} + {y^2}} $
$ \to \theta = {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) $
In our question, we have $ x = 0,y = 0 $
Therefore, $ r = \sqrt {0 + 0} = 0 $ and $ \theta = {\tan ^{ - 1}}\left( {\dfrac{0}{0}} \right) = {\tan ^{ - 1}}0 = \pi $ .
Hence, we have converted the Cartesian form $ \left( {0,0} \right) $ into polar form $ \left( {0,\pi } \right) $ .
$ x = r \times \cos \theta $ and $ y = r \times \sin \theta $ . Using these formulas, we will get the Cartesian coordinates of the given polar coordinates.
Complete step by step solution:
In this question, we have to find the Cartesian form of $ \left( {0,\pi } \right) $ .
The given form is in polar form.
First of all, what are Cartesian forms and polar forms?
Cartesian form:
Cartesian coordinates are used to mark how far along and how far up a point is.
Cartesian coordinates are represented by $ \left( {x,y} \right) $ .
Polar form:
Polar coordinates are used to mark how far away and at what angle a point is.
Polar coordinates are represented by $ \left( {r,\theta } \right) $ , where $ r $ is the distance and $ \theta $ is the angle.
Conversion of polar coordinates $ \left( {r,\theta } \right) $ to Cartesian coordinates $ \left( {x,y} \right) $ :
$ \to x = r \times \cos \theta $ .
$ \to y = r \times \sin \theta $ .
In our question, polar coordinates are $ \left( {0,\pi } \right) $ . Therefore,
$ r = 0 $ and $ \theta = \pi $ .
Therefore, Cartesian coordinates will be
$
\to x = 0 \times \cos \pi \\
\to x = 0 \;
$
And,
$
\to y = 0 \times \sin \pi \\
\to y = 0 \;
$
Therefore, $ \left( {0,0} \right) $ will be our Cartesian form.
Hence, we have converted $ \left( {0,\pi } \right) $ polar form into $ \left( {0,0} \right) $ Cartesian form.
So, the correct answer is “{0,0}”.
Note: Conversion of Cartesian coordinates $ \left( {x,y} \right) $ to polar coordinates $ \left( {r,\theta } \right) $ :
Cartesian coordinates can be converted to polar coordinates using the formula
$ \to r = \sqrt {{x^2} + {y^2}} $
$ \to \theta = {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) $
In our question, we have $ x = 0,y = 0 $
Therefore, $ r = \sqrt {0 + 0} = 0 $ and $ \theta = {\tan ^{ - 1}}\left( {\dfrac{0}{0}} \right) = {\tan ^{ - 1}}0 = \pi $ .
Hence, we have converted the Cartesian form $ \left( {0,0} \right) $ into polar form $ \left( {0,\pi } \right) $ .
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

