
What is the Cartesian form of $ \left( {0,\pi } \right) $ ?
Answer
456.9k+ views
Hint: The given form is in polar form. The general polar form is $ \left( {r,\theta } \right) $ . Hence, $ r $ will be equal to 0 and $ \theta $ will be equal to $ \pi $ . Now, to convert polar form into Cartesian form, we will be using the formula
$ x = r \times \cos \theta $ and $ y = r \times \sin \theta $ . Using these formulas, we will get the Cartesian coordinates of the given polar coordinates.
Complete step by step solution:
In this question, we have to find the Cartesian form of $ \left( {0,\pi } \right) $ .
The given form is in polar form.
First of all, what are Cartesian forms and polar forms?
Cartesian form:
Cartesian coordinates are used to mark how far along and how far up a point is.
Cartesian coordinates are represented by $ \left( {x,y} \right) $ .
Polar form:
Polar coordinates are used to mark how far away and at what angle a point is.
Polar coordinates are represented by $ \left( {r,\theta } \right) $ , where $ r $ is the distance and $ \theta $ is the angle.
Conversion of polar coordinates $ \left( {r,\theta } \right) $ to Cartesian coordinates $ \left( {x,y} \right) $ :
$ \to x = r \times \cos \theta $ .
$ \to y = r \times \sin \theta $ .
In our question, polar coordinates are $ \left( {0,\pi } \right) $ . Therefore,
$ r = 0 $ and $ \theta = \pi $ .
Therefore, Cartesian coordinates will be
$
\to x = 0 \times \cos \pi \\
\to x = 0 \;
$
And,
$
\to y = 0 \times \sin \pi \\
\to y = 0 \;
$
Therefore, $ \left( {0,0} \right) $ will be our Cartesian form.
Hence, we have converted $ \left( {0,\pi } \right) $ polar form into $ \left( {0,0} \right) $ Cartesian form.
So, the correct answer is “{0,0}”.
Note: Conversion of Cartesian coordinates $ \left( {x,y} \right) $ to polar coordinates $ \left( {r,\theta } \right) $ :
Cartesian coordinates can be converted to polar coordinates using the formula
$ \to r = \sqrt {{x^2} + {y^2}} $
$ \to \theta = {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) $
In our question, we have $ x = 0,y = 0 $
Therefore, $ r = \sqrt {0 + 0} = 0 $ and $ \theta = {\tan ^{ - 1}}\left( {\dfrac{0}{0}} \right) = {\tan ^{ - 1}}0 = \pi $ .
Hence, we have converted the Cartesian form $ \left( {0,0} \right) $ into polar form $ \left( {0,\pi } \right) $ .
$ x = r \times \cos \theta $ and $ y = r \times \sin \theta $ . Using these formulas, we will get the Cartesian coordinates of the given polar coordinates.
Complete step by step solution:
In this question, we have to find the Cartesian form of $ \left( {0,\pi } \right) $ .
The given form is in polar form.
First of all, what are Cartesian forms and polar forms?
Cartesian form:
Cartesian coordinates are used to mark how far along and how far up a point is.
Cartesian coordinates are represented by $ \left( {x,y} \right) $ .
Polar form:
Polar coordinates are used to mark how far away and at what angle a point is.
Polar coordinates are represented by $ \left( {r,\theta } \right) $ , where $ r $ is the distance and $ \theta $ is the angle.
Conversion of polar coordinates $ \left( {r,\theta } \right) $ to Cartesian coordinates $ \left( {x,y} \right) $ :
$ \to x = r \times \cos \theta $ .
$ \to y = r \times \sin \theta $ .
In our question, polar coordinates are $ \left( {0,\pi } \right) $ . Therefore,
$ r = 0 $ and $ \theta = \pi $ .
Therefore, Cartesian coordinates will be
$
\to x = 0 \times \cos \pi \\
\to x = 0 \;
$
And,
$
\to y = 0 \times \sin \pi \\
\to y = 0 \;
$
Therefore, $ \left( {0,0} \right) $ will be our Cartesian form.
Hence, we have converted $ \left( {0,\pi } \right) $ polar form into $ \left( {0,0} \right) $ Cartesian form.
So, the correct answer is “{0,0}”.
Note: Conversion of Cartesian coordinates $ \left( {x,y} \right) $ to polar coordinates $ \left( {r,\theta } \right) $ :
Cartesian coordinates can be converted to polar coordinates using the formula
$ \to r = \sqrt {{x^2} + {y^2}} $
$ \to \theta = {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) $
In our question, we have $ x = 0,y = 0 $
Therefore, $ r = \sqrt {0 + 0} = 0 $ and $ \theta = {\tan ^{ - 1}}\left( {\dfrac{0}{0}} \right) = {\tan ^{ - 1}}0 = \pi $ .
Hence, we have converted the Cartesian form $ \left( {0,0} \right) $ into polar form $ \left( {0,\pi } \right) $ .
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What is the type of food and mode of feeding of the class 11 biology CBSE
