Calculate the value of molar gas constant ‘R’ in
a.) cc atm ${K^{ - 1}}mo{l^{ - 1}}$
b.) torr cc ${K^{ - 1}}mo{l^{ - 1}}$
c.) kPa liter ${K^{ - 1}}mo{l^{ - 1}}$
Answer
Verified
483.9k+ views
Hint: Before attempting this question one should have prior knowledge about the molar gas constant and also remember to use the ideal gas equation i.e. PV = nRT, using these instructions will help you to approach towards the solution to the problem.
Complete step by step solution: According to the question the first pressure which is given in atm while the volume in CC. therefore, when the pressure is expressed in atmosphere [atm] and volume in CC.
Then, the value of P & V are taken as:-
P=1atm V=22400cc
The ideal gas equation is given as: PV=nRT
From here the value of R is \[R = \dfrac{{PV}}{{nT}}\]
Where P is pressure, V is volume, n is no. of moles, T is temperature.
So, \[R = \dfrac{{PV}}{{nT}}\] (equation 1)
P is taken as = 1atm
V is taken as = 22400cc and T is in Kelvin which means the value of T will be 273k and n=1.
Equating these value in equation 1 we get
\[R = \dfrac{{PV}}{{nT}}\]
$ \Rightarrow $$R = \dfrac{{1 \times 22400}}{{1 \times 273}}$= $\dfrac{{22400}}{{273}} = 82.1ccatm{K^{ - 1}}mo{l^{ - 1}}$
2) Hence, the pressure is given in terms of torr and volume in cc
So, the value of pressure in torr is=760 torr, and volume in cc is = 22400cc
T=273k and n=1.
Similarly, equating these values in equation 1 we get
\[R = \dfrac{{PV}}{{nT}}\]
$ \Rightarrow $\[R = \dfrac{{760 \times 22400}}{{1 \times 273}}\]
$ \Rightarrow $$R = \dfrac{{17024000}}{{273}}$
So, R = 62360 torr cc ${K^{ - 1}}mo{l^{ - 1}}$
3) Now, the pressure is given in kilo pascal and volume in litre.
As we known, the value of pressure in kilopascal is 101.3KPa and volume is= 22.4litre, while T and h remain same as above two equations
T=273K n=1
Again, equating these values in equation 1 we get
\[R = \dfrac{{PV}}{{nT}}\]
\[R = \dfrac{{101.3 \times 22.4}}{{1 \times 273}}\]=$\dfrac{{2269.12}}{{273}}$= $ = 8.311$
$ \Rightarrow $R= 8.31 K pa liter \[{K^{ - 1}}mo{l^{ - 1}}\]
Note: Molar gas constant or [R] is simply a physical constant that exists in the general gas law formulation. The constant, however, is the same for all gases, since one mole or one molecular weight in grams is the mass of gas being measured.
So, for one mole, $\dfrac{{PV}}{T} = R$ and the value of R is$8.314 mo{l^{ - 1}}{K^{ - 1}}$.
Complete step by step solution: According to the question the first pressure which is given in atm while the volume in CC. therefore, when the pressure is expressed in atmosphere [atm] and volume in CC.
Then, the value of P & V are taken as:-
P=1atm V=22400cc
The ideal gas equation is given as: PV=nRT
From here the value of R is \[R = \dfrac{{PV}}{{nT}}\]
Where P is pressure, V is volume, n is no. of moles, T is temperature.
So, \[R = \dfrac{{PV}}{{nT}}\] (equation 1)
P is taken as = 1atm
V is taken as = 22400cc and T is in Kelvin which means the value of T will be 273k and n=1.
Equating these value in equation 1 we get
\[R = \dfrac{{PV}}{{nT}}\]
$ \Rightarrow $$R = \dfrac{{1 \times 22400}}{{1 \times 273}}$= $\dfrac{{22400}}{{273}} = 82.1ccatm{K^{ - 1}}mo{l^{ - 1}}$
2) Hence, the pressure is given in terms of torr and volume in cc
So, the value of pressure in torr is=760 torr, and volume in cc is = 22400cc
T=273k and n=1.
Similarly, equating these values in equation 1 we get
\[R = \dfrac{{PV}}{{nT}}\]
$ \Rightarrow $\[R = \dfrac{{760 \times 22400}}{{1 \times 273}}\]
$ \Rightarrow $$R = \dfrac{{17024000}}{{273}}$
So, R = 62360 torr cc ${K^{ - 1}}mo{l^{ - 1}}$
3) Now, the pressure is given in kilo pascal and volume in litre.
As we known, the value of pressure in kilopascal is 101.3KPa and volume is= 22.4litre, while T and h remain same as above two equations
T=273K n=1
Again, equating these values in equation 1 we get
\[R = \dfrac{{PV}}{{nT}}\]
\[R = \dfrac{{101.3 \times 22.4}}{{1 \times 273}}\]=$\dfrac{{2269.12}}{{273}}$= $ = 8.311$
$ \Rightarrow $R= 8.31 K pa liter \[{K^{ - 1}}mo{l^{ - 1}}\]
Note: Molar gas constant or [R] is simply a physical constant that exists in the general gas law formulation. The constant, however, is the same for all gases, since one mole or one molecular weight in grams is the mass of gas being measured.
So, for one mole, $\dfrac{{PV}}{T} = R$ and the value of R is$8.314 mo{l^{ - 1}}{K^{ - 1}}$.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE