
Calculate the shortest and longest wavelengths in the hydrogen spectrum of Lyman series.
Answer
469.4k+ views
Hint: The lines arise when electron comes from higher energy level to lower energy level of Principle quantum number one is known as Lyman series. Longest wavelength corresponds to the lowest energy transition and shortest wavelength corresponds to the highest energy transition.
Formula used:
\[\dfrac{{\text{1}}}{\lambda} = \,{{\text{R}}_{\text{H}}}\left[ {\dfrac{{\text{1}}}{{{\text{n}}_{{\text{Lower}}}^{\text{2}}}} - \dfrac{{\text{1}}}{{{\text{n}}_{{\text{higher}}}^2}}} \right]\]
Complete step by step answer:
The formula to determine the wavelength of transitions in hydrogen spectrum is as follows:
\[\dfrac{{\text{1}}}{\lambda} = \,{{\text{R}}_{\text{H}}}\left[ {\dfrac{{\text{1}}}{{{\text{n}}_{{\text{Lower}}}^{\text{2}}}} - \dfrac{{\text{1}}}{{{\text{n}}_{{\text{higher}}}^2}}} \right]\]
Where,
\[\lambda\] is the wavelength.
\[{{\text{R}}_{\text{H}}}\] is the Rydberg constant.
The value of Rydberg constant is $109678\,{\text{c}}{{\text{m}}^{ - 1}}$ .
\[{{\text{n}}_{{\text{lower}}}}\] is the principle quantum of the energy level in which the electron comes.
\[{{\text{n}}_{{\text{higher}}}}\] is the principle quantum of the energy level from which the electron comes.
Lyman series arise when electrons from higher energy levels come to the energy level of principle quantum number one. So, the \[{{\text{n}}_{{\text{higher}}}}\] is \[{{\text{n}}_1}\].
So, the wavelength formula for Lyman series is as follows:
\[\dfrac{{\text{1}}}{\lambda} = \,{{\text{R}}_{\text{H}}}\left[ {\dfrac{{\text{1}}}{{{\text{n}}_1^{\text{2}}}} - \dfrac{{\text{1}}}{{{\text{n}}_{{\text{higher}}}^2}}} \right]\]
Shortest wavelengths in the hydrogen spectrum of Lyman series means the electron is coming from the highest energy level. The highest energy level is \[{{\text{n}}_\infty }\].
So, the shortest wavelengths is,
Substitute $109678\,{\text{c}}{{\text{m}}^{ - 1}}$ for Rydberg constant, $n_1=1$ and \[{{\text{n}}_\infty }\] for \[{{\text{n}}_{{\text{higher}}}}\].
\[\Rightarrow \dfrac{{\text{1}}}{\lambda} = \,{{\text{R}}_{\text{H}}}\left[ {\dfrac{{\text{1}}}{{{\text{n}}_1^{\text{2}}}} - \dfrac{{\text{1}}}{{{\text{n}}_\infty ^2}}} \right]\]
\[\Rightarrow \dfrac{{\text{1}}}{\lambda} = \,109678\,{\text{c}}{{\text{m}}^{ - 1}}\]
\[\Rightarrow \lambda = \dfrac{{\text{1}}}{{\,109678\,{\text{c}}{{\text{m}}^{ - 1}}}}\]
\[\Rightarrow \lambda = 9.11 \times \,{10^{ - 6}}\,{\text{cm}}\]
So, the shortest wavelength is \[9.11 \times \,{10^{ - 6}}\,{\text{cm}}\].
Longest wavelengths in the hydrogen spectrum of Lyman series means the electron is coming from the next higher energy level. The next higher energy level is second so, the \[{{\text{n}}_{{\text{higher}}}}\] is \[2\].
So, the longest wavelengths is,
Substitute \[{\text{c}}{{\text{m}}^{ - 1}}\] for Rydberg constant and \[{{\text{n}}_2}\] for \[{{\text{n}}_{{\text{higher}}}}\].
\[\Rightarrow \dfrac{{\text{1}}}{\lambda} = \,109678\,{\text{c}}{{\text{m}}^{ - 1}}\left[ {\dfrac{{\text{1}}}{{{\text{n}}_1^2}} - \dfrac{{\text{1}}}{{{\text{n}}_2^2}}} \right]\]
\[\Rightarrow \dfrac{{\text{1}}}{\lambda} = \,109678\,{\text{c}}{{\text{m}}^{ - 1}}\left[ {\dfrac{{\text{1}}}{{{1^2}}} - \dfrac{{\text{1}}}{{{2^2}}}} \right]\]
\[\Rightarrow \dfrac{{\text{1}}}{\lambda} = \,109678\,{\text{c}}{{\text{m}}^{ - 1}} \times \dfrac{3}{4}\]
\[\Rightarrow \dfrac{{\text{1}}}{\lambda} = \,82258.5\,{\text{c}}{{\text{m}}^{ - 1}}\]
\[\Rightarrow \lambda = \dfrac{{\text{1}}}{{82258.5\,{\text{c}}{{\text{m}}^{ - 1}}}}\]
\[\Rightarrow \lambda = 1.22 \times {10^{ - 5}}\,{\text{cm}}\]
So, the longest wavelength is \[1.22 \times {10^{ - 5}}\,{\text{cm}}\].
Therefore, the shortest and longest wavelengths in hydrogen spectrum of Lyman series are \[9.11 \times \,{10^{ - 6}}\,{\text{cm}}\]and \[1.22 \times {10^{ - 5}}\,{\text{cm}}\] respectively.
Note:
The relation between energy and wavelength is as follows: ${\text{E = }}\dfrac{{{\text{hc}}}}{\lambda}$ . Wavelength and energy are inversely proportional. In hydrogen atoms the lowest energy level has principal quantum number one. The highest energy level can be infinite. The Lyman series lies in the ultraviolet region of the electromagnetic spectrum.
Formula used:
\[\dfrac{{\text{1}}}{\lambda} = \,{{\text{R}}_{\text{H}}}\left[ {\dfrac{{\text{1}}}{{{\text{n}}_{{\text{Lower}}}^{\text{2}}}} - \dfrac{{\text{1}}}{{{\text{n}}_{{\text{higher}}}^2}}} \right]\]
Complete step by step answer:
The formula to determine the wavelength of transitions in hydrogen spectrum is as follows:
\[\dfrac{{\text{1}}}{\lambda} = \,{{\text{R}}_{\text{H}}}\left[ {\dfrac{{\text{1}}}{{{\text{n}}_{{\text{Lower}}}^{\text{2}}}} - \dfrac{{\text{1}}}{{{\text{n}}_{{\text{higher}}}^2}}} \right]\]
Where,
\[\lambda\] is the wavelength.
\[{{\text{R}}_{\text{H}}}\] is the Rydberg constant.
The value of Rydberg constant is $109678\,{\text{c}}{{\text{m}}^{ - 1}}$ .
\[{{\text{n}}_{{\text{lower}}}}\] is the principle quantum of the energy level in which the electron comes.
\[{{\text{n}}_{{\text{higher}}}}\] is the principle quantum of the energy level from which the electron comes.
Lyman series arise when electrons from higher energy levels come to the energy level of principle quantum number one. So, the \[{{\text{n}}_{{\text{higher}}}}\] is \[{{\text{n}}_1}\].
So, the wavelength formula for Lyman series is as follows:
\[\dfrac{{\text{1}}}{\lambda} = \,{{\text{R}}_{\text{H}}}\left[ {\dfrac{{\text{1}}}{{{\text{n}}_1^{\text{2}}}} - \dfrac{{\text{1}}}{{{\text{n}}_{{\text{higher}}}^2}}} \right]\]
Shortest wavelengths in the hydrogen spectrum of Lyman series means the electron is coming from the highest energy level. The highest energy level is \[{{\text{n}}_\infty }\].
So, the shortest wavelengths is,
Substitute $109678\,{\text{c}}{{\text{m}}^{ - 1}}$ for Rydberg constant, $n_1=1$ and \[{{\text{n}}_\infty }\] for \[{{\text{n}}_{{\text{higher}}}}\].
\[\Rightarrow \dfrac{{\text{1}}}{\lambda} = \,{{\text{R}}_{\text{H}}}\left[ {\dfrac{{\text{1}}}{{{\text{n}}_1^{\text{2}}}} - \dfrac{{\text{1}}}{{{\text{n}}_\infty ^2}}} \right]\]
\[\Rightarrow \dfrac{{\text{1}}}{\lambda} = \,109678\,{\text{c}}{{\text{m}}^{ - 1}}\]
\[\Rightarrow \lambda = \dfrac{{\text{1}}}{{\,109678\,{\text{c}}{{\text{m}}^{ - 1}}}}\]
\[\Rightarrow \lambda = 9.11 \times \,{10^{ - 6}}\,{\text{cm}}\]
So, the shortest wavelength is \[9.11 \times \,{10^{ - 6}}\,{\text{cm}}\].
Longest wavelengths in the hydrogen spectrum of Lyman series means the electron is coming from the next higher energy level. The next higher energy level is second so, the \[{{\text{n}}_{{\text{higher}}}}\] is \[2\].
So, the longest wavelengths is,
Substitute \[{\text{c}}{{\text{m}}^{ - 1}}\] for Rydberg constant and \[{{\text{n}}_2}\] for \[{{\text{n}}_{{\text{higher}}}}\].
\[\Rightarrow \dfrac{{\text{1}}}{\lambda} = \,109678\,{\text{c}}{{\text{m}}^{ - 1}}\left[ {\dfrac{{\text{1}}}{{{\text{n}}_1^2}} - \dfrac{{\text{1}}}{{{\text{n}}_2^2}}} \right]\]
\[\Rightarrow \dfrac{{\text{1}}}{\lambda} = \,109678\,{\text{c}}{{\text{m}}^{ - 1}}\left[ {\dfrac{{\text{1}}}{{{1^2}}} - \dfrac{{\text{1}}}{{{2^2}}}} \right]\]
\[\Rightarrow \dfrac{{\text{1}}}{\lambda} = \,109678\,{\text{c}}{{\text{m}}^{ - 1}} \times \dfrac{3}{4}\]
\[\Rightarrow \dfrac{{\text{1}}}{\lambda} = \,82258.5\,{\text{c}}{{\text{m}}^{ - 1}}\]
\[\Rightarrow \lambda = \dfrac{{\text{1}}}{{82258.5\,{\text{c}}{{\text{m}}^{ - 1}}}}\]
\[\Rightarrow \lambda = 1.22 \times {10^{ - 5}}\,{\text{cm}}\]
So, the longest wavelength is \[1.22 \times {10^{ - 5}}\,{\text{cm}}\].
Therefore, the shortest and longest wavelengths in hydrogen spectrum of Lyman series are \[9.11 \times \,{10^{ - 6}}\,{\text{cm}}\]and \[1.22 \times {10^{ - 5}}\,{\text{cm}}\] respectively.
Note:
The relation between energy and wavelength is as follows: ${\text{E = }}\dfrac{{{\text{hc}}}}{\lambda}$ . Wavelength and energy are inversely proportional. In hydrogen atoms the lowest energy level has principal quantum number one. The highest energy level can be infinite. The Lyman series lies in the ultraviolet region of the electromagnetic spectrum.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
