
Calculate the resonant frequency and Q-factor (Quality factor) of a series L-C-R circuit containing a pure inductor of \[4\text{ H}\], capacitor of capacitance \[27\text{ }\mu \text{F}\] and resistor of resistance \[8.4\text{ }\Omega \].
Answer
576.3k+ views
Hint: At resonant frequency, the current in an L-C-R circuit will be maximum, which is possible only when inductive reactance \[{{X}_{L}}\] is equal to capacitive reactance \[{{X}_{c}}\].
At \[\omega ={{\omega }_{o}}\], \[{{X}_{L}}={{X}_{c}}\], that is,
\[{{\omega }_{o}}L=\dfrac{1}{{{\omega }_{o}}C}\]
Formula used:
The resonant frequency \[{{f}_{o}}\] of a series L-C-R is given by
\[{{f}_{o}}=\dfrac{1}{2\pi \sqrt{LC}}\]
Here L denotes the inductance of the inductor and C denotes the capacitance of the capacitor.
The Q-factor of the circuit is s given by
\[Q=\dfrac{1}{R}\sqrt{\dfrac{L}{C}}\]
Here L denotes the inductance of the inductor, C denotes the capacitance of the capacitor, and R denotes the resistance of the resistor.
Complete step by step solution:
Inductance, \[L=4\text{ H}\]
Capacitance, \[C=27\text{ }\mu \text{F}\]
Resistance, \[R=8.4\text{ }\Omega \]
To find the resonant frequency, substitute the values of L and C in the resonant frequency formula:
\[\begin{align}
& {{f}_{o}}=\dfrac{1}{2\pi \sqrt{(4\text{ H)(27 }\mu \text{F)}}} \\
& {{f}_{o}}=\dfrac{1}{2\pi \sqrt{(4\text{ H)(27}\times \text{1}{{\text{0}}^{-6}}\text{F)}}} \\
& {{f}_{o}}=15.31\text{ Hz} \\
\end{align}\]
Now, to find the Q-factor of the circuit, substitute the values of L, C, and R in the Q-factor frequency formula:
\[\begin{align}
& Q=\dfrac{1}{8.4\text{ }\Omega }\sqrt{\dfrac{4\text{ H}}{27\text{ }\mu \text{F}}} \\
& Q=\dfrac{1}{8.4\text{ }\Omega }\sqrt{\dfrac{4\text{ H}}{\text{27}\times \text{1}{{\text{0}}^{-6}}\text{F}}} \\
& Q=45.82 \\
\end{align}\]
Therefore, the resonant frequency of the L-C-R circuit is \[15.31\text{ Hz}\] and the Q-factor is \[45.82\].
Additional information:
In general resonance is a phenomenon in which the natural frequency of a harmonic oscillator matches with the frequency of an external periodic force which in turn increases the amplitude of vibration.
Resonance is the result of oscillations in an L-C-R circuit as stored energy is passed from the inductor to the capacitor.
The sharpness of resonance is quantitatively described by a dimensionless number known as Q-factor or quality factor which is numerically equal to ratio of resonant frequency to bandwidth. The bandwidth is equal to L/R.
Note: The Q-factor of a series L-C-R circuit will be large if R is low, C is low or L is large.
At \[\omega ={{\omega }_{o}}\], \[{{X}_{L}}={{X}_{c}}\], that is,
\[{{\omega }_{o}}L=\dfrac{1}{{{\omega }_{o}}C}\]
Formula used:
The resonant frequency \[{{f}_{o}}\] of a series L-C-R is given by
\[{{f}_{o}}=\dfrac{1}{2\pi \sqrt{LC}}\]
Here L denotes the inductance of the inductor and C denotes the capacitance of the capacitor.
The Q-factor of the circuit is s given by
\[Q=\dfrac{1}{R}\sqrt{\dfrac{L}{C}}\]
Here L denotes the inductance of the inductor, C denotes the capacitance of the capacitor, and R denotes the resistance of the resistor.
Complete step by step solution:
Inductance, \[L=4\text{ H}\]
Capacitance, \[C=27\text{ }\mu \text{F}\]
Resistance, \[R=8.4\text{ }\Omega \]
To find the resonant frequency, substitute the values of L and C in the resonant frequency formula:
\[\begin{align}
& {{f}_{o}}=\dfrac{1}{2\pi \sqrt{(4\text{ H)(27 }\mu \text{F)}}} \\
& {{f}_{o}}=\dfrac{1}{2\pi \sqrt{(4\text{ H)(27}\times \text{1}{{\text{0}}^{-6}}\text{F)}}} \\
& {{f}_{o}}=15.31\text{ Hz} \\
\end{align}\]
Now, to find the Q-factor of the circuit, substitute the values of L, C, and R in the Q-factor frequency formula:
\[\begin{align}
& Q=\dfrac{1}{8.4\text{ }\Omega }\sqrt{\dfrac{4\text{ H}}{27\text{ }\mu \text{F}}} \\
& Q=\dfrac{1}{8.4\text{ }\Omega }\sqrt{\dfrac{4\text{ H}}{\text{27}\times \text{1}{{\text{0}}^{-6}}\text{F}}} \\
& Q=45.82 \\
\end{align}\]
Therefore, the resonant frequency of the L-C-R circuit is \[15.31\text{ Hz}\] and the Q-factor is \[45.82\].
Additional information:
In general resonance is a phenomenon in which the natural frequency of a harmonic oscillator matches with the frequency of an external periodic force which in turn increases the amplitude of vibration.
Resonance is the result of oscillations in an L-C-R circuit as stored energy is passed from the inductor to the capacitor.
The sharpness of resonance is quantitatively described by a dimensionless number known as Q-factor or quality factor which is numerically equal to ratio of resonant frequency to bandwidth. The bandwidth is equal to L/R.
Note: The Q-factor of a series L-C-R circuit will be large if R is low, C is low or L is large.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

