
Calculate the potential of hydrogen electrode in contact with a solution whose pH is 10.
Answer
545.1k+ views
Hint: We need to calculate the potential of hydrogen electrode in contact with a solution whose pH is 10. This question is of chapter electrochemistry.
Formula used: $ {E_{cell}} = {E^0} - \dfrac{{0.0591}}{n}\log \dfrac{{\left[ P \right]}}{{\left[ R \right]}} $
Here $ n $ is the number of electrons
$ P $ stands for product
$ R $ stands for reactant.
Complete step by step answer
We already know that,
Given pH=10
We already that $ pH = - \log \left[ {{H^ + }} \right] $
$ \left[ {{H^ + }} \right] = {10^{ - 10}}M $
Also, for hydrogen electrode:
$ E = 0 $
$ {E_{cell}} = {E^0} - \dfrac{{0.0591}}{1}\log \dfrac{{\left[ {{H_2}} \right]}}{{\left[ {{H^ + }} \right]}} $
Substituting the values:
$ {E_{cell}} = {E^0} - \dfrac{{0.0591}}{1}\log \dfrac{1}{{{{10}^{ - 10}}}} = - 0.591{\text{V}} $
So, the potential of hydrogen electrode in contact with a solution whose pH is 10 is $ - 0.591{\text{V}} $ .
Note
In electrochemistry, the Nernst equation is an equation that relates the reduction potential of an electrochemical reaction (half-cell or full cell reaction) to the standard electrode potential, temperature, and activities (often approximated by concentrations) of the chemical species undergoing reduction and oxidation. Even under non-standard conditions, the cell potentials of electrochemical cells can be determined with the help of the Nernst equation. The Nernst equation is often used to calculate the cell potential of an electrochemical cell at any given temperature, pressure, and reactant concentration.
The Nernst equation is an important relation which is used to determine reaction equilibrium constants and concentration potentials as well as to calculate the minimum energy required in electrodialysis. It defines the relationship between cell potential to standard potential and to the activities of the electrically active species. It relates the effective concentrations of the components of a cell reaction to the standard cell potential.
To write the cell reaction corresponding to a cell diagram, the right-hand half reaction is written as a reduction, and the left-hand half-reaction, written as an oxidation.
Formula used: $ {E_{cell}} = {E^0} - \dfrac{{0.0591}}{n}\log \dfrac{{\left[ P \right]}}{{\left[ R \right]}} $
Here $ n $ is the number of electrons
$ P $ stands for product
$ R $ stands for reactant.
Complete step by step answer
We already know that,
Given pH=10
We already that $ pH = - \log \left[ {{H^ + }} \right] $
$ \left[ {{H^ + }} \right] = {10^{ - 10}}M $
Also, for hydrogen electrode:
$ E = 0 $
$ {E_{cell}} = {E^0} - \dfrac{{0.0591}}{1}\log \dfrac{{\left[ {{H_2}} \right]}}{{\left[ {{H^ + }} \right]}} $
Substituting the values:
$ {E_{cell}} = {E^0} - \dfrac{{0.0591}}{1}\log \dfrac{1}{{{{10}^{ - 10}}}} = - 0.591{\text{V}} $
So, the potential of hydrogen electrode in contact with a solution whose pH is 10 is $ - 0.591{\text{V}} $ .
Note
In electrochemistry, the Nernst equation is an equation that relates the reduction potential of an electrochemical reaction (half-cell or full cell reaction) to the standard electrode potential, temperature, and activities (often approximated by concentrations) of the chemical species undergoing reduction and oxidation. Even under non-standard conditions, the cell potentials of electrochemical cells can be determined with the help of the Nernst equation. The Nernst equation is often used to calculate the cell potential of an electrochemical cell at any given temperature, pressure, and reactant concentration.
The Nernst equation is an important relation which is used to determine reaction equilibrium constants and concentration potentials as well as to calculate the minimum energy required in electrodialysis. It defines the relationship between cell potential to standard potential and to the activities of the electrically active species. It relates the effective concentrations of the components of a cell reaction to the standard cell potential.
To write the cell reaction corresponding to a cell diagram, the right-hand half reaction is written as a reduction, and the left-hand half-reaction, written as an oxidation.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

