Questions & Answers

Question

Answers

$_{ 1 }^{ 2 }{ H }\quad +\quad _{ 1 }^{ 2 }{ H }\quad \longrightarrow \quad _{ 2 }^{ 3 }{ He }\quad +\quad _{ 0 }^{ 1 }{ n }$

Assume that the masses of $_{1}^{2}{H}$, $_{2}^{3}{He}$ and neutron (n) respectively are 2.0141, 3.0160 and 1.0087 in amu.

Answer
Verified

There are 4 types of nuclear reactions: Fission, fusion, nuclear decay, and transmutation. The type of nuclear reaction present in the reaction given is fusion reaction. In this reaction two or more atomic nuclei combine to form a single nuclei.

Now, the mass defect is given as:

$Mass\quad defect,\quad \Delta m\quad =\quad Mass\quad of\quad reactant\quad -\quad mass\quad of\quad product$

The mass of the reactant is 2*2.0141 and the mass of the product is 3.0160 + 1.0087. Substituting these values in the above equation, we get

$Mass\quad defect,\quad \Delta m\quad =\quad (2\quad \times \quad 2.0141)\quad -\quad (3.0160\quad +\quad 1.0087)$

$\implies Mass\quad defect,\quad \Delta m\quad =\quad 4.0282\quad -\quad 4.0247$

$\implies Mass\quad defect,\quad \Delta m\quad =\quad 0.0035\quad amu\quad =\quad 3.5\quad \times \quad { 10 }^{ -3 }\quad amu$

Now, as we can see the mass defect is coming out to be positive which means that the mass of the reactant is greater than the mass of the product. This shows that some energy has been released in the reaction.

$_{ 1 }^{ 2 }{ H }\quad +\quad _{ 1 }^{ 2 }{ H }\quad \longrightarrow \quad _{ 2 }^{ 3 }{ He }\quad +\quad _{ 0 }^{ 1 }{ n }\quad +\quad \Delta E$

Now, we know that 1 amu = 931.5 MeV

So, now let us calculate the energy which is given by:

$Energy\quad =\quad 3.5\quad \times \quad { 10 }^{ -3 }\quad amu\quad =\quad 931.5\quad \times \quad 3.5\quad \times \quad { 10 }^{ -3 }\quad MeV$

$\implies Energy\quad =\quad 3.26025\quad MeV$

Also, $1\quad MeV\quad =\quad 1.602\quad \times \quad { 10 }^{ -13 }\quad Joules$

Therefore, $ Energy\quad in\quad Joules\quad =\quad 3.26025\quad \times \quad 1.602\quad \times \quad { 10 }^{ -13 }\quad Joules$

$\implies Energy\quad in\quad Joules\quad =\quad 5.2229205\quad \times \quad { 10 }^{ -13 }\quad Joules$

Thus, the energy released in MeV and Joules is 3.26025 MeV and $5.22292005 \times {10}^{-13}$ Joules respectively.

×

Sorry!, This page is not available for now to bookmark.