
Calculate the area of the designed region in the figure, common between the two quadrants of the circle of radius 8 cm each.

Answer
506.7k+ views
Hint: Given is a square of side 8cm. The area of the designed region can be found by dividing it into \[I\] and \[II\]. Subtract the area of the triangle from the area of sector. Similarly for region \[II\] also. Total area will sum the area of region \[I\] and \[II\].
Complete step-by-step answer:
Consider the figure that has been given to us, it’s a square with sides 8 cm. We know in a square all sides are the same and the angles are \[{{90}^{\circ }}\]. Now let us mark the square as ABCD.
Now, we need to find the area of the designed region in the given figure.
Let us mark the region we need to find as\[I\]and\[II\].
Now, let us find the area of the first quadrant.
Thus area of designed region =
Area of the Region\[I\]+ Area of the Region\[II\] \[\to (1)\]
\[\text{Area of Region I = Area of sector ABC - area of }\vartriangle \text{ABC}\text{.}\] \[\to (2)\]
We know the formula for calculating for \[area\text{ }of\text{ }sector=\dfrac{\theta }{360}\pi {{r}^{2}}\]
Now for the quadrant radius, \[r=8cm\](from the figure)
We know the \[area\text{ }of\text{ traingle}=\dfrac{1}{2}bh\]
Now let us substitute all these values in (2). Here\[\theta ={{90}^{\circ }}\], as the angle of a square is\[{{90}^{\circ }}\], as given in figure. Here \[b=h=8cm\]
\[\begin{align}
& area\text{ }of\text{ Region I}=\dfrac{\theta }{360}\pi {{r}^{2}}-\dfrac{1}{2}bh \\
& \\
& \text{ = }\dfrac{90}{360}\times \dfrac{22}{7}\times {{8}^{2}}-\dfrac{1}{2}\times 8\times 8 \\
& \\
& \text{ = }\dfrac{1}{4}\times \dfrac{22}{7}\times 8\times 8-\dfrac{1}{2}\times 8\times 8 \\
& \\
& \text{ = }\dfrac{352}{7}-32 \\
& \\
& area\text{ }of\text{ Region I}=\left( \dfrac{352}{7}-32 \right)c{{m}^{2}}. \\
\end{align}\]
Now the area of the Region\[\text{II}\] is the same as the area of the 1st quadrant. But we could still check it.
\[\begin{align}
& Area\text{ of Region }II=Area\text{ of sector ADC - Area of}\vartriangle ADC \\
& \\
& Area\text{ of Region }II=\dfrac{\theta }{360}\times \pi {{r}^{2}}-\dfrac{1}{2}bh \\
\end{align}\]
Here, \[\theta ={{90}^{\circ }},r=8cm,b=8cm,h=8cm\]
Thus let us substitute all these values in the above expression.
\[\begin{align}
& Area\text{ of Region }II=\dfrac{90}{360}\times \dfrac{22}{7}\times {{8}^{2}}-\left( \dfrac{1}{2}\times 8\times 8 \right) \\
& \\
& \text{ =}\left( \dfrac{1}{4}\times \dfrac{22}{7}\times 8\times 8 \right)-\left( 4\times 8 \right) \\
& \\
& \text{ =}\left( \dfrac{352}{7}-32 \right)c{{m}^{2}} \\
\end{align}\]
Thus\[area\text{ }of\text{ }the\text{ }designed\text{ }region\text{ }=Area\text{ }of\text{ }region\text{ }I\text{ }+\text{ }area\text{ }of\text{ }region\text{ }II\]
\[\begin{align}
& =\left( \dfrac{352}{7}-32 \right)+\left( \dfrac{352}{7}-32 \right) \\
& \\
& =2\left( \dfrac{352}{7}-32 \right) \\
& \\
& =2\left( \dfrac{352-224}{7} \right) \\
& \\
& =\dfrac{256}{7} \\
\end{align}\]
Hence we got the area of the shaded region as\[\dfrac{256}{7}c{{m}^{2}}\].
Note: You can also find the area of the designed region by.
\[\begin{align}
& =Area\text{ }of\text{ }the\text{ }{{1}^{st}}quadrant\text{ }+\text{ }Area\text{ }of\text{ }the\text{ }{{2}^{nd}}quadrant\text-Area\text{ }of\text{ }the\text{ }square \\
& \\
& =area\text{ }of\text{ }\sec tor\text{ }ABC\text{ }+\text{ }area\text{ }of\text{ }\sec tor\text{ }ADC\text{ }-\text{ }\left( side \right){{~}^{2}}~~~ \\
& \\
& =\dfrac{\theta }{360}~\times \text{ }\pi {{r}^{2}}+~\dfrac{\theta }{360}~\times \text{ }\pi {{r}^{2}}~-{{8}^{2}} \\
& \\
& =2\times \dfrac{90}{360}\times \dfrac{22}{7}\times {{8}^{2}}-{{8}^{2}} \\
& \\
& =\dfrac{11}{7}\times 64-64 \\
& \\
& =64\left( \dfrac{11}{7}-1 \right) \\
& \\
& =\dfrac{64\times 4}{7} \\
& \\
& =\dfrac{256}{7}c{{m}^{2}}. \\
\end{align}\]
Complete step-by-step answer:
Consider the figure that has been given to us, it’s a square with sides 8 cm. We know in a square all sides are the same and the angles are \[{{90}^{\circ }}\]. Now let us mark the square as ABCD.
Now, we need to find the area of the designed region in the given figure.

Let us mark the region we need to find as\[I\]and\[II\].
Now, let us find the area of the first quadrant.
Thus area of designed region =
Area of the Region\[I\]+ Area of the Region\[II\] \[\to (1)\]
\[\text{Area of Region I = Area of sector ABC - area of }\vartriangle \text{ABC}\text{.}\] \[\to (2)\]
We know the formula for calculating for \[area\text{ }of\text{ }sector=\dfrac{\theta }{360}\pi {{r}^{2}}\]
Now for the quadrant radius, \[r=8cm\](from the figure)
We know the \[area\text{ }of\text{ traingle}=\dfrac{1}{2}bh\]
Now let us substitute all these values in (2). Here\[\theta ={{90}^{\circ }}\], as the angle of a square is\[{{90}^{\circ }}\], as given in figure. Here \[b=h=8cm\]
\[\begin{align}
& area\text{ }of\text{ Region I}=\dfrac{\theta }{360}\pi {{r}^{2}}-\dfrac{1}{2}bh \\
& \\
& \text{ = }\dfrac{90}{360}\times \dfrac{22}{7}\times {{8}^{2}}-\dfrac{1}{2}\times 8\times 8 \\
& \\
& \text{ = }\dfrac{1}{4}\times \dfrac{22}{7}\times 8\times 8-\dfrac{1}{2}\times 8\times 8 \\
& \\
& \text{ = }\dfrac{352}{7}-32 \\
& \\
& area\text{ }of\text{ Region I}=\left( \dfrac{352}{7}-32 \right)c{{m}^{2}}. \\
\end{align}\]
Now the area of the Region\[\text{II}\] is the same as the area of the 1st quadrant. But we could still check it.

\[\begin{align}
& Area\text{ of Region }II=Area\text{ of sector ADC - Area of}\vartriangle ADC \\
& \\
& Area\text{ of Region }II=\dfrac{\theta }{360}\times \pi {{r}^{2}}-\dfrac{1}{2}bh \\
\end{align}\]
Here, \[\theta ={{90}^{\circ }},r=8cm,b=8cm,h=8cm\]
Thus let us substitute all these values in the above expression.
\[\begin{align}
& Area\text{ of Region }II=\dfrac{90}{360}\times \dfrac{22}{7}\times {{8}^{2}}-\left( \dfrac{1}{2}\times 8\times 8 \right) \\
& \\
& \text{ =}\left( \dfrac{1}{4}\times \dfrac{22}{7}\times 8\times 8 \right)-\left( 4\times 8 \right) \\
& \\
& \text{ =}\left( \dfrac{352}{7}-32 \right)c{{m}^{2}} \\
\end{align}\]
Thus\[area\text{ }of\text{ }the\text{ }designed\text{ }region\text{ }=Area\text{ }of\text{ }region\text{ }I\text{ }+\text{ }area\text{ }of\text{ }region\text{ }II\]
\[\begin{align}
& =\left( \dfrac{352}{7}-32 \right)+\left( \dfrac{352}{7}-32 \right) \\
& \\
& =2\left( \dfrac{352}{7}-32 \right) \\
& \\
& =2\left( \dfrac{352-224}{7} \right) \\
& \\
& =\dfrac{256}{7} \\
\end{align}\]
Hence we got the area of the shaded region as\[\dfrac{256}{7}c{{m}^{2}}\].
Note: You can also find the area of the designed region by.
\[\begin{align}
& =Area\text{ }of\text{ }the\text{ }{{1}^{st}}quadrant\text{ }+\text{ }Area\text{ }of\text{ }the\text{ }{{2}^{nd}}quadrant\text-Area\text{ }of\text{ }the\text{ }square \\
& \\
& =area\text{ }of\text{ }\sec tor\text{ }ABC\text{ }+\text{ }area\text{ }of\text{ }\sec tor\text{ }ADC\text{ }-\text{ }\left( side \right){{~}^{2}}~~~ \\
& \\
& =\dfrac{\theta }{360}~\times \text{ }\pi {{r}^{2}}+~\dfrac{\theta }{360}~\times \text{ }\pi {{r}^{2}}~-{{8}^{2}} \\
& \\
& =2\times \dfrac{90}{360}\times \dfrac{22}{7}\times {{8}^{2}}-{{8}^{2}} \\
& \\
& =\dfrac{11}{7}\times 64-64 \\
& \\
& =64\left( \dfrac{11}{7}-1 \right) \\
& \\
& =\dfrac{64\times 4}{7} \\
& \\
& =\dfrac{256}{7}c{{m}^{2}}. \\
\end{align}\]
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE
