
Calculate the area of a triangle with vertices $\left( {1,1} \right),\left( {3,1} \right)$ and $\left( {5,7} \right)$.
A. 6
B. 7
C. 9
D. 10
Answer
552.3k+ views
Hint: Here, will use the formula of the area of a triangle and substitute the given vertices in that formula to find the required area. A triangle is a two-dimensional figure which has three sides and three vertices.
Formula Used:
Area of a triangle $ = \left| {\dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]} \right|$
Complete step-by-step answer:
According to the question,
We are given the three vertices of a triangle.
Let the vertices of the triangle be $A = \left( {1,1} \right)$, $B = \left( {3,1} \right)$ and $C = \left( {5,7} \right)$.
Hence, we have to find the area of $\vartriangle ABC$ whose three vertices are given.
Now, we will use the formula:
Area of a triangle $ = \left| {\dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]} \right|$………………….$\left( 1 \right)$
Now, substituting $\left( {{x_1},{y_1}} \right) = \left( {1,1} \right)$, $\left( {{x_2},{y_2}} \right) = \left( {3,1} \right)$ and $\left( {{x_3},{y_3}} \right) = \left( {5,7} \right)$, in equation $\left( 1 \right)$, we get
Area of $\vartriangle ABC = \left| {\dfrac{1}{2}\left[ {1\left( {1 - 7} \right) + 3\left( {7 - 1} \right) + 5\left( {1 - 1} \right)} \right]} \right|$
$ \Rightarrow $ Area of $\vartriangle ABC = \left| {\dfrac{1}{2}\left[ {1\left( { - 6} \right) + 3\left( 6 \right) + 5\left( 0 \right)} \right]} \right|$
Solving this further, we get,
$ \Rightarrow $ Area of $\vartriangle ABC = \left| {\dfrac{1}{2}\left[ { - 6 + 18 + 0} \right]} \right| = \left| {\dfrac{1}{2}\left( {12} \right)} \right| = \left| 6 \right|$
Now, we have used the modulus sign because the area of a triangle cannot be negative.
Hence, Area of $\vartriangle ABC = 6$ square units
Therefore, the area of the triangle with vertices $\left( {1,1} \right),\left( {3,1} \right)$and $\left( {5,7} \right)$ is 6 square units.
Hence, option A is the correct answer.
Note:
We can also find the area of the triangle using the help of determinants.
We will use the formula:
Area of triangle
$ = \left| {\dfrac{1}{2}\left| \begin{gathered}
{x_1}{\text{ }}{y_1}{\text{ }}1 \\
{x_2}{\text{ }}{y_2}{\text{ }}1 \\
{x_3}{\text{ }}{y_3}{\text{ }}1 \\
\end{gathered} \right|} \right|$
Now, Substituting $\left( {{x_1},{y_1}} \right) = \left( {1,1} \right)$, $\left( {{x_2},{y_2}} \right) = \left( {3,1} \right)$ and $\left( {{x_3},{y_3}} \right) = \left( {5,7} \right)$ we get,
Area of $\vartriangle ABC = \left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{l}}
1&1&1 \\
3&1&1 \\
5&7&1
\end{array}} \right|} \right|$
Now, solving the determinant,
$ \Rightarrow ar\vartriangle ABC = \left| {\dfrac{1}{2}\left[ {1\left( {1 - 7} \right) - 1\left( {3 - 5} \right) + 1\left( {21 - 5} \right)} \right]} \right|$
$ \Rightarrow ar\vartriangle ABC = \left| {\dfrac{1}{2}\left[ { - 6 + 2 + 16} \right]} \right|$
Solving further,
$ \Rightarrow ar\vartriangle ABC = \left| {\dfrac{1}{2} \times 12} \right| = \left| 6 \right|$
Therefore, area of $\vartriangle ABC = 6$square units
Hence, option A is the correct answer.
Also, we have used the ‘modulus sign’ while finding the area of the triangle because it means that we have to take the absolute value of the terms present inside it, i.e. we will only take the non-negative values of the terms present inside the modulus when we will remove it. Hence, we have used Modulus, keeping in mind that area of a triangle can never be negative.
Formula Used:
Area of a triangle $ = \left| {\dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]} \right|$
Complete step-by-step answer:
According to the question,
We are given the three vertices of a triangle.
Let the vertices of the triangle be $A = \left( {1,1} \right)$, $B = \left( {3,1} \right)$ and $C = \left( {5,7} \right)$.
Hence, we have to find the area of $\vartriangle ABC$ whose three vertices are given.
Now, we will use the formula:
Area of a triangle $ = \left| {\dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]} \right|$………………….$\left( 1 \right)$
Now, substituting $\left( {{x_1},{y_1}} \right) = \left( {1,1} \right)$, $\left( {{x_2},{y_2}} \right) = \left( {3,1} \right)$ and $\left( {{x_3},{y_3}} \right) = \left( {5,7} \right)$, in equation $\left( 1 \right)$, we get
Area of $\vartriangle ABC = \left| {\dfrac{1}{2}\left[ {1\left( {1 - 7} \right) + 3\left( {7 - 1} \right) + 5\left( {1 - 1} \right)} \right]} \right|$
$ \Rightarrow $ Area of $\vartriangle ABC = \left| {\dfrac{1}{2}\left[ {1\left( { - 6} \right) + 3\left( 6 \right) + 5\left( 0 \right)} \right]} \right|$
Solving this further, we get,
$ \Rightarrow $ Area of $\vartriangle ABC = \left| {\dfrac{1}{2}\left[ { - 6 + 18 + 0} \right]} \right| = \left| {\dfrac{1}{2}\left( {12} \right)} \right| = \left| 6 \right|$
Now, we have used the modulus sign because the area of a triangle cannot be negative.
Hence, Area of $\vartriangle ABC = 6$ square units
Therefore, the area of the triangle with vertices $\left( {1,1} \right),\left( {3,1} \right)$and $\left( {5,7} \right)$ is 6 square units.
Hence, option A is the correct answer.
Note:
We can also find the area of the triangle using the help of determinants.
We will use the formula:
Area of triangle
$ = \left| {\dfrac{1}{2}\left| \begin{gathered}
{x_1}{\text{ }}{y_1}{\text{ }}1 \\
{x_2}{\text{ }}{y_2}{\text{ }}1 \\
{x_3}{\text{ }}{y_3}{\text{ }}1 \\
\end{gathered} \right|} \right|$
Now, Substituting $\left( {{x_1},{y_1}} \right) = \left( {1,1} \right)$, $\left( {{x_2},{y_2}} \right) = \left( {3,1} \right)$ and $\left( {{x_3},{y_3}} \right) = \left( {5,7} \right)$ we get,
Area of $\vartriangle ABC = \left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{l}}
1&1&1 \\
3&1&1 \\
5&7&1
\end{array}} \right|} \right|$
Now, solving the determinant,
$ \Rightarrow ar\vartriangle ABC = \left| {\dfrac{1}{2}\left[ {1\left( {1 - 7} \right) - 1\left( {3 - 5} \right) + 1\left( {21 - 5} \right)} \right]} \right|$
$ \Rightarrow ar\vartriangle ABC = \left| {\dfrac{1}{2}\left[ { - 6 + 2 + 16} \right]} \right|$
Solving further,
$ \Rightarrow ar\vartriangle ABC = \left| {\dfrac{1}{2} \times 12} \right| = \left| 6 \right|$
Therefore, area of $\vartriangle ABC = 6$square units
Hence, option A is the correct answer.
Also, we have used the ‘modulus sign’ while finding the area of the triangle because it means that we have to take the absolute value of the terms present inside it, i.e. we will only take the non-negative values of the terms present inside the modulus when we will remove it. Hence, we have used Modulus, keeping in mind that area of a triangle can never be negative.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE


