
By what number should ${3^9}$ be multiplied so as to get 3.
Answer
564.6k+ views
Hint:
We can assume x to be the required number. Then we can multiply the given number with x and equate it to 3. Then we can solve for x. Then we can obtain the required number by using properties of exponents.
Complete step by step solution:
Let the required number that gives 3 when multiplied with ${3^9}$ be x.
Now we can write it as an equation.
$ \Rightarrow {3^9} \times x = 3$
Now we can divide both sides with ${3^9}$ . So, we will get,
$ \Rightarrow x = \dfrac{3}{{{3^9}}}$
We can write the numerator 3 as 3 raised to the power 1. So, we will get,
$ \Rightarrow x = \dfrac{{{3^1}}}{{{3^9}}}$
We know that by properties of exponents, $\dfrac{{{a^x}}}{{{a^y}}} = {a^{x - y}}$ . On applying this condition, we get,
$ \Rightarrow x = {3^{1 - 9}}$
On simplifying the power, we get,
$ \Rightarrow x = {3^{ - 8}}$
So, the required number is ${3^{ - 8}}$.
Note:
Alternate solution is given by,
As the given number is a power of 3, the required number also will be a power of 3.
Let the required number that gives 3 when multiplied with ${3^9}$ be ${3^x}$.
Now we can write it as an equation.
$ \Rightarrow {3^9} \times {3^x} = 3$
Now we can take the logarithm on both sides. So, we get,
$ \Rightarrow \log \left( {{3^9} \times {3^x}} \right) = \log 3$
We know that the log of the products is equal to the sum of the logarithms. It is given by the equation $\log ab = \log a + \log b$. Then the equation will become
$ \Rightarrow \log \left( {{3^9}} \right) + \log \left( {{3^x}} \right) = \log 3$
We know that $\log {a^b} = b\log a$. So, the equation will become,
\[ \Rightarrow 9\log \left( 3 \right) + x\log \left( 3 \right) = \log 3\]
Now we can divide throughout with $\log 3$. So, the equation will become,
\[ \Rightarrow 9 + x = 1\]
Now we can solve for x.
\[ \Rightarrow x = 1 - 9\]
On further simplification, we get,
\[ \Rightarrow x = - 8\]
So, the required number is ${3^{ - 8}}$.
We can assume x to be the required number. Then we can multiply the given number with x and equate it to 3. Then we can solve for x. Then we can obtain the required number by using properties of exponents.
Complete step by step solution:
Let the required number that gives 3 when multiplied with ${3^9}$ be x.
Now we can write it as an equation.
$ \Rightarrow {3^9} \times x = 3$
Now we can divide both sides with ${3^9}$ . So, we will get,
$ \Rightarrow x = \dfrac{3}{{{3^9}}}$
We can write the numerator 3 as 3 raised to the power 1. So, we will get,
$ \Rightarrow x = \dfrac{{{3^1}}}{{{3^9}}}$
We know that by properties of exponents, $\dfrac{{{a^x}}}{{{a^y}}} = {a^{x - y}}$ . On applying this condition, we get,
$ \Rightarrow x = {3^{1 - 9}}$
On simplifying the power, we get,
$ \Rightarrow x = {3^{ - 8}}$
So, the required number is ${3^{ - 8}}$.
Note:
Alternate solution is given by,
As the given number is a power of 3, the required number also will be a power of 3.
Let the required number that gives 3 when multiplied with ${3^9}$ be ${3^x}$.
Now we can write it as an equation.
$ \Rightarrow {3^9} \times {3^x} = 3$
Now we can take the logarithm on both sides. So, we get,
$ \Rightarrow \log \left( {{3^9} \times {3^x}} \right) = \log 3$
We know that the log of the products is equal to the sum of the logarithms. It is given by the equation $\log ab = \log a + \log b$. Then the equation will become
$ \Rightarrow \log \left( {{3^9}} \right) + \log \left( {{3^x}} \right) = \log 3$
We know that $\log {a^b} = b\log a$. So, the equation will become,
\[ \Rightarrow 9\log \left( 3 \right) + x\log \left( 3 \right) = \log 3\]
Now we can divide throughout with $\log 3$. So, the equation will become,
\[ \Rightarrow 9 + x = 1\]
Now we can solve for x.
\[ \Rightarrow x = 1 - 9\]
On further simplification, we get,
\[ \Rightarrow x = - 8\]
So, the required number is ${3^{ - 8}}$.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

One lakh eight thousand how can we write it in num class 7 maths CBSE

Differentiate between weather and climate How do they class 7 social science CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE


