
By using the coefficient of variable, solve the following equations:
(1) $3x - 4y = 7;$$5x + 2y = 3$
(2) $5x + 7y = 17;$$3x - 2y = 4$
(3) $x - 2y = - 10;$ $3x - 5y = - 12$
(4) $4x + y = 34;$ $x + 4y = 16$
Answer
588.6k+ views
Hint: If the equation is given in the form as ${a_1}x + {b_1}y + {c_1} = 0$ and ${a_2}x + {b_2}y + {c_2} = 0$ then the solution is given by:
$\dfrac{x}{{\left| {\begin{array}{*{20}{c}}
{{b_1}}&{{c_1}} \\
{{b_2}}&{{c_2}}
\end{array}} \right|}} = \dfrac{{ - y}}{{\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{c_1}} \\
{{a_2}}&{{c_2}}
\end{array}} \right|}} = \dfrac{1}{{\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}} \\
{{a_2}}&{{b_2}}
\end{array}} \right|}}$
Now $\left| {\begin{array}{*{20}{c}}
{{b_1}}&{{c_1}} \\
{{b_2}}&{{c_2}}
\end{array}} \right|$ represents the determinant
Complete step-by-step answer:
(1) Here we are given two equations like
$3x - 4y = 7;$ $5x + 2y = 3$
So first make it in the form $ax + by + c = 0$
So $3x - 4y -7 = 0;$ $5x + 2y -3 = 0$
So we can solve the solution of two linear lines ${a_1}x + {b_1}y + {c_1} = 0$ and ${a_2}x + {b_2}y + {c_2} = 0$ as follows:
$\dfrac{x}{{\left| {\begin{array}{*{20}{c}}
{{b_1}}&{{c_1}} \\
{{b_2}}&{{c_2}}
\end{array}} \right|}} = \dfrac{{ - y}}{{\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{c_1}} \\
{{a_2}}&{{c_2}}
\end{array}} \right|}} = \dfrac{1}{{\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}} \\
{{a_2}}&{{b_2}}
\end{array}} \right|}}$
So we can write it as
$\dfrac{x}{{\left| {\begin{array}{*{20}{c}}
{ - 4}&{ - 7} \\
2&{ - 3}
\end{array}} \right|}} = \dfrac{{ - y}}{{\left| {\begin{array}{*{20}{c}}
3&{ - 7} \\
5&{ - 3}
\end{array}} \right|}} = \dfrac{1}{{\left| {\begin{array}{*{20}{c}}
3&{ - 4} \\
5&2
\end{array}} \right|}}$
Now upon solving, we get:
$\dfrac{x}{{( - 4)( - 3) - ( - 7)(2)}} = \dfrac{{ - y}}{{3( - 3) + 7(5)}} = \dfrac{1}{{3(2) + 4(5)}}$
$\dfrac{x}{{26}} = \dfrac{{ - y}}{{26}} = \dfrac{1}{{26}}$
So we can write it as
$\dfrac{x}{{26}} = \dfrac{1}{{26}}$ and $\dfrac{{ - y}}{{26}} = \dfrac{1}{{26}}$
So we get on solving these that
$x = 1,y = - 1$
(2) $5x + 7y = 17;$ $3x - 2y = 4$
So again we are given two equations $5x + 7y = 17;$ $3x - 2y = 4$
We apply the formula
$\dfrac{x}{{\left| {\begin{array}{*{20}{c}}
7&{ - 17} \\
{ - 2}&{ - 4}
\end{array}} \right|}} = \dfrac{{ - y}}{{\left| {\begin{array}{*{20}{c}}
5&{ - 17} \\
3&{ - 4}
\end{array}} \right|}} = \dfrac{1}{{\left| {\begin{array}{*{20}{c}}
5&7 \\
3&{ - 2}
\end{array}} \right|}}$
$\dfrac{x}{{(7)( - 4) - ( - 17)( - 2)}} = \dfrac{{ - y}}{{5( - 4) + 17(3)}} = \dfrac{1}{{5( - 2) - 3(7)}}$
$\dfrac{x}{{ - 62}} = \dfrac{{ - y}}{{31}} = \dfrac{1}{{ - 31}}$
So we can write it as:
$\dfrac{x}{{ - 62}} = \dfrac{1}{{ - 31}}$ and $\dfrac{{ - y}}{{31}} = \dfrac{1}{{ - 31}}$
So we get $x = 2,y = 1$
(3) $x - 2y = - 10;$ $3x - 5y = - 12$
Now again we will solve as we are given two equations $x - 2y = - 10;$ $3x - 5y = - 12$
$\dfrac{x}{{\left| {\begin{array}{*{20}{c}}
{ - 2}&{10} \\
{ - 5}&{12}
\end{array}} \right|}} = \dfrac{{ - y}}{{\left| {\begin{array}{*{20}{c}}
1&{10} \\
3&{12}
\end{array}} \right|}} = \dfrac{1}{{\left| {\begin{array}{*{20}{c}}
1&{ - 2} \\
3&{ - 5}
\end{array}} \right|}}$
$\dfrac{x}{{( - 2)(12) - (10)( - 5)}} = \dfrac{{ - y}}{{12(1) - 10(3)}} = \dfrac{1}{{1( - 5) - ( - 2)(3)}}$
$\dfrac{x}{{26}} = \dfrac{{ - y}}{{ - 18}} = \dfrac{1}{1}$
So we can write it as
$\dfrac{x}{{26}} = \dfrac{1}{1}$ and $\dfrac{{ - y}}{{ - 18}} = \dfrac{1}{1}$
Hence we get that $x = 26,y = 18$
(4) $4x + y = 34;$ $x + 4y = 16$
First we take the equation of the form $ax + by + c = 0$
So we are given two equations $4x + y = 34;$ $x + 4y = 16$
$\dfrac{x}{{\left| {\begin{array}{*{20}{c}}
1&{ - 34} \\
4&{ - 16}
\end{array}} \right|}} = \dfrac{{ - y}}{{\left| {\begin{array}{*{20}{c}}
4&{ - 34} \\
1&{ - 16}
\end{array}} \right|}} = \dfrac{1}{{\left| {\begin{array}{*{20}{c}}
1&4 \\
4&1
\end{array}} \right|}}$
$\dfrac{x}{{( - 16) - ( - 34)(4)}} = \dfrac{{ - y}}{{4( - 16) - ( - 34)}} = \dfrac{1}{{16 - 1}}$
$\dfrac{x}{{120}} = \dfrac{{ - y}}{{ - 30}} = \dfrac{1}{{15}}$
So we can write this as:
$\dfrac{x}{{120}} = \dfrac{1}{{15}}$ and $\dfrac{{ - y}}{{ - 30}} = \dfrac{1}{{15}}$
So we get that $x = 8,y = 2$
Note: We can do this question by the substitution method also like in the
(1) $3x - 4y = 7;$ $5x + 2y = 3$
So first we can find $x$ in the terms of $y$ and then put this in the second equation.
For example: $3x - 4y = 7;$
$x = \dfrac{{7 + 4y}}{3}$ and now put this value in the second equation:
$5(\dfrac{{7 + 4y}}{3}) + 2y = 3$ and now you can get the value of both $x,y.$
$\dfrac{x}{{\left| {\begin{array}{*{20}{c}}
{{b_1}}&{{c_1}} \\
{{b_2}}&{{c_2}}
\end{array}} \right|}} = \dfrac{{ - y}}{{\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{c_1}} \\
{{a_2}}&{{c_2}}
\end{array}} \right|}} = \dfrac{1}{{\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}} \\
{{a_2}}&{{b_2}}
\end{array}} \right|}}$
Now $\left| {\begin{array}{*{20}{c}}
{{b_1}}&{{c_1}} \\
{{b_2}}&{{c_2}}
\end{array}} \right|$ represents the determinant
Complete step-by-step answer:
(1) Here we are given two equations like
$3x - 4y = 7;$ $5x + 2y = 3$
So first make it in the form $ax + by + c = 0$
So $3x - 4y -7 = 0;$ $5x + 2y -3 = 0$
So we can solve the solution of two linear lines ${a_1}x + {b_1}y + {c_1} = 0$ and ${a_2}x + {b_2}y + {c_2} = 0$ as follows:
$\dfrac{x}{{\left| {\begin{array}{*{20}{c}}
{{b_1}}&{{c_1}} \\
{{b_2}}&{{c_2}}
\end{array}} \right|}} = \dfrac{{ - y}}{{\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{c_1}} \\
{{a_2}}&{{c_2}}
\end{array}} \right|}} = \dfrac{1}{{\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}} \\
{{a_2}}&{{b_2}}
\end{array}} \right|}}$
So we can write it as
$\dfrac{x}{{\left| {\begin{array}{*{20}{c}}
{ - 4}&{ - 7} \\
2&{ - 3}
\end{array}} \right|}} = \dfrac{{ - y}}{{\left| {\begin{array}{*{20}{c}}
3&{ - 7} \\
5&{ - 3}
\end{array}} \right|}} = \dfrac{1}{{\left| {\begin{array}{*{20}{c}}
3&{ - 4} \\
5&2
\end{array}} \right|}}$
Now upon solving, we get:
$\dfrac{x}{{( - 4)( - 3) - ( - 7)(2)}} = \dfrac{{ - y}}{{3( - 3) + 7(5)}} = \dfrac{1}{{3(2) + 4(5)}}$
$\dfrac{x}{{26}} = \dfrac{{ - y}}{{26}} = \dfrac{1}{{26}}$
So we can write it as
$\dfrac{x}{{26}} = \dfrac{1}{{26}}$ and $\dfrac{{ - y}}{{26}} = \dfrac{1}{{26}}$
So we get on solving these that
$x = 1,y = - 1$
(2) $5x + 7y = 17;$ $3x - 2y = 4$
So again we are given two equations $5x + 7y = 17;$ $3x - 2y = 4$
We apply the formula
$\dfrac{x}{{\left| {\begin{array}{*{20}{c}}
7&{ - 17} \\
{ - 2}&{ - 4}
\end{array}} \right|}} = \dfrac{{ - y}}{{\left| {\begin{array}{*{20}{c}}
5&{ - 17} \\
3&{ - 4}
\end{array}} \right|}} = \dfrac{1}{{\left| {\begin{array}{*{20}{c}}
5&7 \\
3&{ - 2}
\end{array}} \right|}}$
$\dfrac{x}{{(7)( - 4) - ( - 17)( - 2)}} = \dfrac{{ - y}}{{5( - 4) + 17(3)}} = \dfrac{1}{{5( - 2) - 3(7)}}$
$\dfrac{x}{{ - 62}} = \dfrac{{ - y}}{{31}} = \dfrac{1}{{ - 31}}$
So we can write it as:
$\dfrac{x}{{ - 62}} = \dfrac{1}{{ - 31}}$ and $\dfrac{{ - y}}{{31}} = \dfrac{1}{{ - 31}}$
So we get $x = 2,y = 1$
(3) $x - 2y = - 10;$ $3x - 5y = - 12$
Now again we will solve as we are given two equations $x - 2y = - 10;$ $3x - 5y = - 12$
$\dfrac{x}{{\left| {\begin{array}{*{20}{c}}
{ - 2}&{10} \\
{ - 5}&{12}
\end{array}} \right|}} = \dfrac{{ - y}}{{\left| {\begin{array}{*{20}{c}}
1&{10} \\
3&{12}
\end{array}} \right|}} = \dfrac{1}{{\left| {\begin{array}{*{20}{c}}
1&{ - 2} \\
3&{ - 5}
\end{array}} \right|}}$
$\dfrac{x}{{( - 2)(12) - (10)( - 5)}} = \dfrac{{ - y}}{{12(1) - 10(3)}} = \dfrac{1}{{1( - 5) - ( - 2)(3)}}$
$\dfrac{x}{{26}} = \dfrac{{ - y}}{{ - 18}} = \dfrac{1}{1}$
So we can write it as
$\dfrac{x}{{26}} = \dfrac{1}{1}$ and $\dfrac{{ - y}}{{ - 18}} = \dfrac{1}{1}$
Hence we get that $x = 26,y = 18$
(4) $4x + y = 34;$ $x + 4y = 16$
First we take the equation of the form $ax + by + c = 0$
So we are given two equations $4x + y = 34;$ $x + 4y = 16$
$\dfrac{x}{{\left| {\begin{array}{*{20}{c}}
1&{ - 34} \\
4&{ - 16}
\end{array}} \right|}} = \dfrac{{ - y}}{{\left| {\begin{array}{*{20}{c}}
4&{ - 34} \\
1&{ - 16}
\end{array}} \right|}} = \dfrac{1}{{\left| {\begin{array}{*{20}{c}}
1&4 \\
4&1
\end{array}} \right|}}$
$\dfrac{x}{{( - 16) - ( - 34)(4)}} = \dfrac{{ - y}}{{4( - 16) - ( - 34)}} = \dfrac{1}{{16 - 1}}$
$\dfrac{x}{{120}} = \dfrac{{ - y}}{{ - 30}} = \dfrac{1}{{15}}$
So we can write this as:
$\dfrac{x}{{120}} = \dfrac{1}{{15}}$ and $\dfrac{{ - y}}{{ - 30}} = \dfrac{1}{{15}}$
So we get that $x = 8,y = 2$
Note: We can do this question by the substitution method also like in the
(1) $3x - 4y = 7;$ $5x + 2y = 3$
So first we can find $x$ in the terms of $y$ and then put this in the second equation.
For example: $3x - 4y = 7;$
$x = \dfrac{{7 + 4y}}{3}$ and now put this value in the second equation:
$5(\dfrac{{7 + 4y}}{3}) + 2y = 3$ and now you can get the value of both $x,y.$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

