
By using binomial theorem, expand ${\left( {1 + x + {x^2}} \right)^3}$
Answer
582k+ views
Hint – In this question let $\left( {x + {x^2}} \right)$ be equal to some variable, so that the given expression
Given expression can be converted to the standard binomial expansion form ${\left( {1 + x} \right)^n}$, whose expansion according to Binomial theorem is given as, ${\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + .............. + {}^n{C_n}{x^n}$.
Complete step-by-step answer:
Given expression
${\left( {1 + x + {x^2}} \right)^3}$
Let
$t = x + {x^2}$
$ \Rightarrow {\left( {1 + x + {x^2}} \right)^3} = {\left( {1 + t} \right)^3}$
Now as we know according to Binomial theorem the expansion of ${\left( {1 + x} \right)^n}$ is
$ \Rightarrow {\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + .............. + {}^n{C_n}{x^n}$
Now as we know that ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ so use this property in above equation we have,
$ \Rightarrow {}^n{C_0} = \dfrac{{n!}}{{0!\left( {n - 0} \right)!}} = 1$, ${}^n{C_1} = \dfrac{{n!}}{{1!\left( {n - 1} \right)!}} = n$, ${}^n{C_2} = \dfrac{{n!}}{{2!\left( {n - 2} \right)!}} = \dfrac{{n\left( {n - 1} \right)}}{{2!}}$ , ${}^n{C_3} = \dfrac{{n!}}{{3!\left( {n - 3} \right)!}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}$ and so on......., so the above equation converts into,
$ \Rightarrow {\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}{x^3} + ..............$
Therefore the expansion of ${\left( {1 + t} \right)^3}$according to binomial theorem is
$ \Rightarrow {\left( {1 + t} \right)^3} = 1 + 3t + \dfrac{{3\left( {3 - 1} \right)}}{{2!}}{t^2} + \dfrac{{3\left( {3 - 1} \right)\left( {3 - 2} \right)}}{{3!}}{t^3}$
Now simplify the above equation we have,
$ \Rightarrow {\left( {1 + t} \right)^3} = 1 + 3t + \dfrac{{3\left( 2 \right)}}{{2 \times 1}}{t^2} + \dfrac{{3\left( 2 \right)\left( 1 \right)}}{{3 \times 2 \times 1}}{t^3}$
$ \Rightarrow {\left( {1 + t} \right)^3} = 1 + 3t + 3{t^2} + {t^3}$
Now re substitute the value of (t) we have,
\[ \Rightarrow {\left( {1 + x + {x^2}} \right)^3} = 1 + 3\left( {x + {x^2}} \right) + 3{\left( {x + {x^2}} \right)^2} + {\left( {x + {x^2}} \right)^3}\]
Now expand the square and cube according to property ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ and${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3a{b^2} + 3{a^2}b$ so we have,
\[ \Rightarrow {\left( {1 + x + {x^2}} \right)^3} = 1 + 3\left( {x + {x^2}} \right) + 3\left( {{x^2} + {x^4} + 2{x^3}} \right) + \left( {{x^3} + {x^6} + 3{x^5} + 3{x^4}} \right)\]
Now simplify the above equation we have,
\[ \Rightarrow {\left( {1 + x + {x^2}} \right)^3} = 1 + 3x + 3{x^2} + 3{x^2} + 3{x^4} + 6{x^3} + \left( {{x^3} + {x^6} + 3{x^5} + 3{x^4}} \right)\]
\[ \Rightarrow {\left( {1 + x + {x^2}} \right)^3} = 1 + 3x + 6{x^2} + 7{x^3} + 6{x^4} + 3{x^5} + {x^6}\]
So this is the required expansion of a given expression using the Binomial theorem.
So this is the required answer.
Note – Binomial theorem specifies the expansion of any power ${\left( {a + b} \right)^m}$ of a binomial $\left( {a + b} \right)$ as a sum of products ${a^i}{b^j}$, such as ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$. Important point here is that every algebraic standard identity is derived from the same concept as being explained.
Given expression can be converted to the standard binomial expansion form ${\left( {1 + x} \right)^n}$, whose expansion according to Binomial theorem is given as, ${\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + .............. + {}^n{C_n}{x^n}$.
Complete step-by-step answer:
Given expression
${\left( {1 + x + {x^2}} \right)^3}$
Let
$t = x + {x^2}$
$ \Rightarrow {\left( {1 + x + {x^2}} \right)^3} = {\left( {1 + t} \right)^3}$
Now as we know according to Binomial theorem the expansion of ${\left( {1 + x} \right)^n}$ is
$ \Rightarrow {\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + .............. + {}^n{C_n}{x^n}$
Now as we know that ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ so use this property in above equation we have,
$ \Rightarrow {}^n{C_0} = \dfrac{{n!}}{{0!\left( {n - 0} \right)!}} = 1$, ${}^n{C_1} = \dfrac{{n!}}{{1!\left( {n - 1} \right)!}} = n$, ${}^n{C_2} = \dfrac{{n!}}{{2!\left( {n - 2} \right)!}} = \dfrac{{n\left( {n - 1} \right)}}{{2!}}$ , ${}^n{C_3} = \dfrac{{n!}}{{3!\left( {n - 3} \right)!}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}$ and so on......., so the above equation converts into,
$ \Rightarrow {\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}{x^3} + ..............$
Therefore the expansion of ${\left( {1 + t} \right)^3}$according to binomial theorem is
$ \Rightarrow {\left( {1 + t} \right)^3} = 1 + 3t + \dfrac{{3\left( {3 - 1} \right)}}{{2!}}{t^2} + \dfrac{{3\left( {3 - 1} \right)\left( {3 - 2} \right)}}{{3!}}{t^3}$
Now simplify the above equation we have,
$ \Rightarrow {\left( {1 + t} \right)^3} = 1 + 3t + \dfrac{{3\left( 2 \right)}}{{2 \times 1}}{t^2} + \dfrac{{3\left( 2 \right)\left( 1 \right)}}{{3 \times 2 \times 1}}{t^3}$
$ \Rightarrow {\left( {1 + t} \right)^3} = 1 + 3t + 3{t^2} + {t^3}$
Now re substitute the value of (t) we have,
\[ \Rightarrow {\left( {1 + x + {x^2}} \right)^3} = 1 + 3\left( {x + {x^2}} \right) + 3{\left( {x + {x^2}} \right)^2} + {\left( {x + {x^2}} \right)^3}\]
Now expand the square and cube according to property ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ and${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3a{b^2} + 3{a^2}b$ so we have,
\[ \Rightarrow {\left( {1 + x + {x^2}} \right)^3} = 1 + 3\left( {x + {x^2}} \right) + 3\left( {{x^2} + {x^4} + 2{x^3}} \right) + \left( {{x^3} + {x^6} + 3{x^5} + 3{x^4}} \right)\]
Now simplify the above equation we have,
\[ \Rightarrow {\left( {1 + x + {x^2}} \right)^3} = 1 + 3x + 3{x^2} + 3{x^2} + 3{x^4} + 6{x^3} + \left( {{x^3} + {x^6} + 3{x^5} + 3{x^4}} \right)\]
\[ \Rightarrow {\left( {1 + x + {x^2}} \right)^3} = 1 + 3x + 6{x^2} + 7{x^3} + 6{x^4} + 3{x^5} + {x^6}\]
So this is the required expansion of a given expression using the Binomial theorem.
So this is the required answer.
Note – Binomial theorem specifies the expansion of any power ${\left( {a + b} \right)^m}$ of a binomial $\left( {a + b} \right)$ as a sum of products ${a^i}{b^j}$, such as ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$. Important point here is that every algebraic standard identity is derived from the same concept as being explained.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

