Answer
Verified
412.5k+ views
Hint: We have to know that borax is nothing but sodium borate, sodium tetraborate, (or) disodium tetraborate. It is a compound that has a chemical formula $N{a_2}{H_4}{B_4}{O_9} \cdot n{H_2}O$. It is a crystalline solid that appears colourless, which is soluble in water. Borax is produced from other boron compounds and recrystallization is the process for refining naturally occurring borax.
Complete step by step answer:
We have to know that the borax is used to represent the amount of related minerals (or) chemical compounds, which varies in their crystal water content. The formula of anhydrous sodium tetraborate is $N{a_2}{B_4}{O_7}$. The formula of sodium tetraborate pentahydrate is $N{a_2}{B_4}{O_7} \cdot 5{H_2}O$. The formula of sodium tetraborate is $N{a_2}{B_4}{O_7} \cdot 10{H_2}O$ (or) similarly the formula of sodium octahydrate is $N{a_2}{B_4}{O_7} \cdot 8{H_2}O$.
We have to that borax contains ${\left[ {{B_4}{O_5}{{\left( {OH} \right)}_4}} \right]^{2 - }}$ ion. In this structure of borax, the number of four-coordinate boron centers is two and the number of three-coordinate boron centers is two. When borax is dissolved in water, $B{\left( {OH} \right)_3}$ and ${\left[ {B{{\left( {OH} \right)}_4}} \right]^ - }$. We can write the chemical equation of boron dissolved in water as,
${\left[ {{B_4}{O_5}{{\left( {OH} \right)}_4}} \right]^{2 - }} + 5{H_2}O \to 2B{\left( {OH} \right)_3} + 2{\left[ {B{{\left( {OH} \right)}_4}} \right]^ - }$
The presence of $B{\left( {OH} \right)_3}$ and ${\left[ {B{{\left( {OH} \right)}_4}} \right]^ - }$ ensures that borax comprises of two triangular units of $B{O_3}$ and two tetrahedral units of $B{O_4}$ units.
Therefore, the option (C) is correct.
When we use borax for titrating against acids, only ${\left[ {B{{\left( {OH} \right)}_4}} \right]^ - }$ reacts with hydrochloric acid, $B{\left( {OH} \right)_3}$ is formed. The chemical equation is written as,
$2{\left[ {B{{\left( {OH} \right)}_4}} \right]^ - } + 2{H_3}{O^ + } \to 2B{\left( {OH} \right)_3} + 4{H_2}O$
The product $B{\left( {OH} \right)_3}$ is formed when ${\left[ {B{{\left( {OH} \right)}_4}} \right]^ - }$ is reacted with hydrochloric acid. Option (A), (B), and (D) are incorrect when borax is dissolved in water.
Therefore, the option (C) is correct.
Note:
We have to know that a yellow green colour is obtained, when borax is added to a flame. Because of the yellow colour of sodium, borax is not used in fireworks. We have to know that borax is much soluble in ethylene glycol, sparingly soluble in diethylene glycol and methanol and mildly soluble in acetone. It is insoluble in cold water but when temperature is increased, the solubility increases.
Complete step by step answer:
We have to know that the borax is used to represent the amount of related minerals (or) chemical compounds, which varies in their crystal water content. The formula of anhydrous sodium tetraborate is $N{a_2}{B_4}{O_7}$. The formula of sodium tetraborate pentahydrate is $N{a_2}{B_4}{O_7} \cdot 5{H_2}O$. The formula of sodium tetraborate is $N{a_2}{B_4}{O_7} \cdot 10{H_2}O$ (or) similarly the formula of sodium octahydrate is $N{a_2}{B_4}{O_7} \cdot 8{H_2}O$.
We have to that borax contains ${\left[ {{B_4}{O_5}{{\left( {OH} \right)}_4}} \right]^{2 - }}$ ion. In this structure of borax, the number of four-coordinate boron centers is two and the number of three-coordinate boron centers is two. When borax is dissolved in water, $B{\left( {OH} \right)_3}$ and ${\left[ {B{{\left( {OH} \right)}_4}} \right]^ - }$. We can write the chemical equation of boron dissolved in water as,
${\left[ {{B_4}{O_5}{{\left( {OH} \right)}_4}} \right]^{2 - }} + 5{H_2}O \to 2B{\left( {OH} \right)_3} + 2{\left[ {B{{\left( {OH} \right)}_4}} \right]^ - }$
The presence of $B{\left( {OH} \right)_3}$ and ${\left[ {B{{\left( {OH} \right)}_4}} \right]^ - }$ ensures that borax comprises of two triangular units of $B{O_3}$ and two tetrahedral units of $B{O_4}$ units.
Therefore, the option (C) is correct.
When we use borax for titrating against acids, only ${\left[ {B{{\left( {OH} \right)}_4}} \right]^ - }$ reacts with hydrochloric acid, $B{\left( {OH} \right)_3}$ is formed. The chemical equation is written as,
$2{\left[ {B{{\left( {OH} \right)}_4}} \right]^ - } + 2{H_3}{O^ + } \to 2B{\left( {OH} \right)_3} + 4{H_2}O$
The product $B{\left( {OH} \right)_3}$ is formed when ${\left[ {B{{\left( {OH} \right)}_4}} \right]^ - }$ is reacted with hydrochloric acid. Option (A), (B), and (D) are incorrect when borax is dissolved in water.
Therefore, the option (C) is correct.
Note:
We have to know that a yellow green colour is obtained, when borax is added to a flame. Because of the yellow colour of sodium, borax is not used in fireworks. We have to know that borax is much soluble in ethylene glycol, sparingly soluble in diethylene glycol and methanol and mildly soluble in acetone. It is insoluble in cold water but when temperature is increased, the solubility increases.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Difference Between Plant Cell and Animal Cell