
At a given instant of time the position vector of a particle moving in a circle with a velocity $3\hat i - 4\hat j + 5\hat k$ is $\hat i + 9\hat j - 8\hat k$ . What is its angular velocity at that time ?
A.$\dfrac{{13\hat i - 29\hat j - 31\hat k}}{{\sqrt {146} }}$
B. $\dfrac{{13\hat i - 29\hat j - 31\hat k}}{{146}}$
C. $\dfrac{{13\hat i + 29\hat j - 31\hat k}}{{\sqrt {146} }}$
D. $\dfrac{{13\hat i + 29\hat j + 31\hat k}}{{146}}$
Answer
573k+ views
Hint: The relation connecting linear velocity $\overrightarrow v $and angular velocity $\overrightarrow \omega $ is given as \[\overrightarrow \omega = \dfrac{{\overrightarrow R \times \overrightarrow v }}{{\left| R \right|\left| R \right|}}\] where $\overrightarrow R $ is the position vector If $\overrightarrow R = \;\;x\hat i + y\hat j + z\hat k$, then magnitude of vector, \[\left| R \right|\] is given by the equation,
\[\left| R \right| = \sqrt {{x^2} + {y^2} + {z^2}} \]
Let $\overrightarrow R = \;\;x\hat i + y\hat j + z\hat k$ and $\overrightarrow v = {v_x}\hat i + {v_y}\hat j + {v_z}\hat k$. Then cross product of these two vectors is given as
\[
\overrightarrow R \times \overrightarrow v = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
x&y&z \\
{{v_x}}&{{v_y}}&{{v_z}}
\end{array}} \right| \\
= \hat i\left( {\left( {y \times {v_z}} \right) - \left( {{v_y} \times z} \right)} \right) - \hat j\left( {\left( {x \times {v_z}} \right) - \left( {z \times {v_x}} \right)} \right) + \hat k\left( {\left( {x \times {v_y}} \right) - \left( {{v_x} \times y} \right)} \right) \\
\]
Complete step by step answer:
The relation connecting linear velocity $\overrightarrow v $and angular velocity $\overrightarrow \omega $ is given as
$\overrightarrow v = \overrightarrow \omega \times \overrightarrow R $ (1)., where $\overrightarrow R $ is the position vector
Given
$\overrightarrow R = \;\;\hat i + 9\hat j - 8\hat k$
$\overrightarrow v = 3\hat i - 4\hat j + 5\hat k$
From equation (1) we can find $\overrightarrow \omega $ as,
\[\overrightarrow \omega = \dfrac{{\overrightarrow R \times \overrightarrow v }}{{\left| R \right|\left| R \right|}}\] (2)
Let $\overrightarrow R = \;\;x\hat i + y\hat j + z\hat k$ Then magnitude of vector, \[\left| R \right|\] is given by the equation,
\[\left| R \right| = \sqrt {{x^2} + {y^2} + {z^2}} \]
Therefore, for the given position vector
\[
\left| R \right| = \sqrt {{x^2} + {y^2} + {z^2}} \\
= \sqrt {{1^2} + {9^2} + {{\left( { - 8} \right)}^2}} \\
= \sqrt {146} \\
\]
Now let us find the cross product.
Let $\overrightarrow R = \;\;x\hat i + y\hat j + z\hat k$ and $\overrightarrow v = {v_x}\hat i + {v_y}\hat j + {v_z}\hat k$. Then cross product of these two vectors is given as
\[
\overrightarrow R \times \overrightarrow v = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
x&y&z \\
{{v_x}}&{{v_y}}&{{v_z}}
\end{array}} \right| \\
= \hat i\left( {\left( {y \times {v_z}} \right) - \left( {{v_y} \times z} \right)} \right) - \hat j\left( {\left( {x \times {v_z}} \right) - \left( {z \times {v_x}} \right)} \right) + \hat k\left( {\left( {x \times {v_y}} \right) - \left( {{v_x} \times y} \right)} \right) \\
\]
Therefore substituting the given values of position and velocity vector we get,
\[
\overrightarrow R \times \overrightarrow v = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&9&{ - 8} \\
3&{ - 4}&5
\end{array}} \right| \\
= \hat i\left( {\left( {9 \times 5} \right) - \left( { - 4 \times - 8} \right)} \right) - \hat j\left( {\left( {1 \times 5} \right) - \left( {3 \times - 8} \right)} \right) + \hat k\left( {\left( {1 \times - 4} \right) - \left( {3 \times 9} \right)} \right) \\
= 13\hat i - 29\hat j - 31\hat k \\
\]
On substituting these values in equation (2), we get
\[
\overrightarrow \omega = \dfrac{{\overrightarrow v \times \overrightarrow R }}{{\left| R \right|\left| R \right|}} \\
= \dfrac{{13\hat i - 29\hat j - 31\hat k}}{{146}} \\
\]
Thus the answer is option B.
Note:
The cross product is anticommutative. It means that $a \times b = - \left( {b \times a} \right)$. Therefore, instead of taking \[\overrightarrow R \times \overrightarrow v \] if we take \[\overrightarrow v \times \overrightarrow R \] the answer will be different .hence take care of the order of vectors while taking cross product.
\[\left| R \right| = \sqrt {{x^2} + {y^2} + {z^2}} \]
Let $\overrightarrow R = \;\;x\hat i + y\hat j + z\hat k$ and $\overrightarrow v = {v_x}\hat i + {v_y}\hat j + {v_z}\hat k$. Then cross product of these two vectors is given as
\[
\overrightarrow R \times \overrightarrow v = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
x&y&z \\
{{v_x}}&{{v_y}}&{{v_z}}
\end{array}} \right| \\
= \hat i\left( {\left( {y \times {v_z}} \right) - \left( {{v_y} \times z} \right)} \right) - \hat j\left( {\left( {x \times {v_z}} \right) - \left( {z \times {v_x}} \right)} \right) + \hat k\left( {\left( {x \times {v_y}} \right) - \left( {{v_x} \times y} \right)} \right) \\
\]
Complete step by step answer:
The relation connecting linear velocity $\overrightarrow v $and angular velocity $\overrightarrow \omega $ is given as
$\overrightarrow v = \overrightarrow \omega \times \overrightarrow R $ (1)., where $\overrightarrow R $ is the position vector
Given
$\overrightarrow R = \;\;\hat i + 9\hat j - 8\hat k$
$\overrightarrow v = 3\hat i - 4\hat j + 5\hat k$
From equation (1) we can find $\overrightarrow \omega $ as,
\[\overrightarrow \omega = \dfrac{{\overrightarrow R \times \overrightarrow v }}{{\left| R \right|\left| R \right|}}\] (2)
Let $\overrightarrow R = \;\;x\hat i + y\hat j + z\hat k$ Then magnitude of vector, \[\left| R \right|\] is given by the equation,
\[\left| R \right| = \sqrt {{x^2} + {y^2} + {z^2}} \]
Therefore, for the given position vector
\[
\left| R \right| = \sqrt {{x^2} + {y^2} + {z^2}} \\
= \sqrt {{1^2} + {9^2} + {{\left( { - 8} \right)}^2}} \\
= \sqrt {146} \\
\]
Now let us find the cross product.
Let $\overrightarrow R = \;\;x\hat i + y\hat j + z\hat k$ and $\overrightarrow v = {v_x}\hat i + {v_y}\hat j + {v_z}\hat k$. Then cross product of these two vectors is given as
\[
\overrightarrow R \times \overrightarrow v = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
x&y&z \\
{{v_x}}&{{v_y}}&{{v_z}}
\end{array}} \right| \\
= \hat i\left( {\left( {y \times {v_z}} \right) - \left( {{v_y} \times z} \right)} \right) - \hat j\left( {\left( {x \times {v_z}} \right) - \left( {z \times {v_x}} \right)} \right) + \hat k\left( {\left( {x \times {v_y}} \right) - \left( {{v_x} \times y} \right)} \right) \\
\]
Therefore substituting the given values of position and velocity vector we get,
\[
\overrightarrow R \times \overrightarrow v = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&9&{ - 8} \\
3&{ - 4}&5
\end{array}} \right| \\
= \hat i\left( {\left( {9 \times 5} \right) - \left( { - 4 \times - 8} \right)} \right) - \hat j\left( {\left( {1 \times 5} \right) - \left( {3 \times - 8} \right)} \right) + \hat k\left( {\left( {1 \times - 4} \right) - \left( {3 \times 9} \right)} \right) \\
= 13\hat i - 29\hat j - 31\hat k \\
\]
On substituting these values in equation (2), we get
\[
\overrightarrow \omega = \dfrac{{\overrightarrow v \times \overrightarrow R }}{{\left| R \right|\left| R \right|}} \\
= \dfrac{{13\hat i - 29\hat j - 31\hat k}}{{146}} \\
\]
Thus the answer is option B.
Note:
The cross product is anticommutative. It means that $a \times b = - \left( {b \times a} \right)$. Therefore, instead of taking \[\overrightarrow R \times \overrightarrow v \] if we take \[\overrightarrow v \times \overrightarrow R \] the answer will be different .hence take care of the order of vectors while taking cross product.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

