
At $ 30{}^\circ \text{ C} $ , a lead bullet 50 g, is fired vertically upwards with a speed of $ 840\text{ m/s} $ . The specific heat of lead is $ 0\cdot 02\text{ cal/g}{}^\circ \text{C} $ . On returning to the starting level, it strikes to a cake of ice at $ 0{}^\circ \text{C} $ . Calculate the amount of ice melted ( Assume all the energy is spent in melting only)
(A) $ 62\cdot 7\text{ g} $
(B) $ 55\text{ g} $
(C) $ 52\cdot 875\text{ kg} $
(D) $ 52\cdot 875\text{ g} $
Answer
556.2k+ views
Hint: Latent heat is defined as the heat or energy that is absorbed or released during a phase change of a substance. It could be either from a gas to a liquid or liquid to solid and vice-versa. Latent heat is related to a heat property called enthalpy
It is given by
$ \text{L}=\dfrac{\text{Q}}{\text{m}} $
L=specific latent heat of a substance
m=mass
Q=energy released or absorbed
During phase change
Kinetic energy is given by
K.E $ =\dfrac{1}{2}\text{ m}{{\text{v}}^{2}} $.
Complete step by step solution
Given,
$ \begin{align}
& \text{m}=50\text{ g}=\dfrac{50}{1000}\text{ kg}=\dfrac{1}{20} \\
& \text{C}=0\cdot 02\text{ cal/g}{}^\circ \text{C} \\
& {{\left( {{\text{T}}_{\text{i}}} \right)}_{\text{Bullet}}}=30{}^\circ \text{ C }{{\left( {{\text{T}}_{\text{i}}} \right)}_{\text{ice}}}=0{}^\circ \text{ C} \\
& \text{v}=840\text{m/s} \\
\end{align} $
Latent heat of ice $ =80\text{cal/g} $
When a bullet is fired vertically upwards and returns to the starting level, only conservative force i.e. gravity acts on the bullet. That means mechanical energy is conserved.
i.e $ \vartriangle $ K.E $ + $ $ \vartriangle $ P.E=0
$ \vartriangle $ P.E=0
Because the final and initial positions are same
Then $ \vartriangle $ K.E is also zero
Therefore, $ \text{v}=840\text{m/s} $
$ \because $ Initial K.E and final K.E are same
At this time, energy is given by
$ \text{E}=\dfrac{1}{2}\text{ m}{{\text{v}}^{2}} $
Put all the value in this expression
$ \begin{align}
& \text{E}=\dfrac{1}{2}\left( \dfrac{1}{20} \right){{\left( 840 \right)}^{2}}\text{ J} \\
& \text{=}\dfrac{1}{2}\times \dfrac{1}{20}\times 840\times 840\text{ J} \\
& \text{=21}\times 840=17640\text{ J} \\
\end{align} $
Convert this in call, then it becomes
$ \begin{align}
& \text{E}=\dfrac{176420}{4\cdot 2} \\
& =4200\text{ cal} \\
\end{align} $
This is the energy of bullet whole energy is spent in melting only
$ \therefore $ Q=4200 cal
Now,
$ {{\left( {{\text{T}}_{\text{i}}} \right)}_{\text{Bullet}}}=30{}^\circ \text{C }{{\left( {{\text{T}}_{\text{i}}} \right)}_{\text{ice}}}=0{}^\circ \text{C} $
For melting of ice temperature of bullet should be equal to temperature of ice
$ \therefore \text{ }\vartriangle \text{T}=30{}^\circ -0{}^\circ =30{}^\circ \text{C} $
And
$ {{\text{Q}}_{1}}=\text{mc}\vartriangle \text{T} $
i.e. heat spent to change the temperature of bullet to $ 0{}^\circ \text{C} $
$ \begin{align}
& \text{m}=50\text{g} \\
& \text{C}=0\cdot 02\text{cal/}{{\text{g}}^{{}^\circ }}\text{C} \\
& \vartriangle \text{T}=30{}^\circ \text{C} \\
\end{align} $
Putting all values
$ \begin{align}
& {{\text{Q}}_{1}}=50\times 0\cdot 02\times 30 \\
& \text{ }=30\text{cal} \\
\end{align} $
Total heat given by bullet $ {{\text{Q}}_{\text{T}}}=4200+30 $
$ =4230\text{cal} $
Now, entire heat of bullet is used in melting ice only,
Let M=mass of ice that method
L=latent heat of ice
Hence,
$ \begin{align}
& \text{m}\times \text{L}={{\text{Q}}_{\text{T}}} \\
& 4230=\text{m}\times 80 \\
& \text{m}=\dfrac{4230}{80} \\
& \text{m}=52\cdot 88\text{g} \\
\end{align} $
Option (D) is correct.
Note
Daily life is filled with examples of latent heat. Water has a high latent heat of fusion, so turning water into ice requires the removal of more energy than freezing liquid oxygen into solid oxygen, per unit gram. Latent heat plays a very important role in thunderstorms and hurricanes.
It is given by
$ \text{L}=\dfrac{\text{Q}}{\text{m}} $
L=specific latent heat of a substance
m=mass
Q=energy released or absorbed
During phase change
Kinetic energy is given by
K.E $ =\dfrac{1}{2}\text{ m}{{\text{v}}^{2}} $.
Complete step by step solution
Given,
$ \begin{align}
& \text{m}=50\text{ g}=\dfrac{50}{1000}\text{ kg}=\dfrac{1}{20} \\
& \text{C}=0\cdot 02\text{ cal/g}{}^\circ \text{C} \\
& {{\left( {{\text{T}}_{\text{i}}} \right)}_{\text{Bullet}}}=30{}^\circ \text{ C }{{\left( {{\text{T}}_{\text{i}}} \right)}_{\text{ice}}}=0{}^\circ \text{ C} \\
& \text{v}=840\text{m/s} \\
\end{align} $
Latent heat of ice $ =80\text{cal/g} $
When a bullet is fired vertically upwards and returns to the starting level, only conservative force i.e. gravity acts on the bullet. That means mechanical energy is conserved.
i.e $ \vartriangle $ K.E $ + $ $ \vartriangle $ P.E=0
$ \vartriangle $ P.E=0
Because the final and initial positions are same
Then $ \vartriangle $ K.E is also zero
Therefore, $ \text{v}=840\text{m/s} $
$ \because $ Initial K.E and final K.E are same
At this time, energy is given by
$ \text{E}=\dfrac{1}{2}\text{ m}{{\text{v}}^{2}} $
Put all the value in this expression
$ \begin{align}
& \text{E}=\dfrac{1}{2}\left( \dfrac{1}{20} \right){{\left( 840 \right)}^{2}}\text{ J} \\
& \text{=}\dfrac{1}{2}\times \dfrac{1}{20}\times 840\times 840\text{ J} \\
& \text{=21}\times 840=17640\text{ J} \\
\end{align} $
Convert this in call, then it becomes
$ \begin{align}
& \text{E}=\dfrac{176420}{4\cdot 2} \\
& =4200\text{ cal} \\
\end{align} $
This is the energy of bullet whole energy is spent in melting only
$ \therefore $ Q=4200 cal
Now,
$ {{\left( {{\text{T}}_{\text{i}}} \right)}_{\text{Bullet}}}=30{}^\circ \text{C }{{\left( {{\text{T}}_{\text{i}}} \right)}_{\text{ice}}}=0{}^\circ \text{C} $
For melting of ice temperature of bullet should be equal to temperature of ice
$ \therefore \text{ }\vartriangle \text{T}=30{}^\circ -0{}^\circ =30{}^\circ \text{C} $
And
$ {{\text{Q}}_{1}}=\text{mc}\vartriangle \text{T} $
i.e. heat spent to change the temperature of bullet to $ 0{}^\circ \text{C} $
$ \begin{align}
& \text{m}=50\text{g} \\
& \text{C}=0\cdot 02\text{cal/}{{\text{g}}^{{}^\circ }}\text{C} \\
& \vartriangle \text{T}=30{}^\circ \text{C} \\
\end{align} $
Putting all values
$ \begin{align}
& {{\text{Q}}_{1}}=50\times 0\cdot 02\times 30 \\
& \text{ }=30\text{cal} \\
\end{align} $
Total heat given by bullet $ {{\text{Q}}_{\text{T}}}=4200+30 $
$ =4230\text{cal} $
Now, entire heat of bullet is used in melting ice only,
Let M=mass of ice that method
L=latent heat of ice
Hence,
$ \begin{align}
& \text{m}\times \text{L}={{\text{Q}}_{\text{T}}} \\
& 4230=\text{m}\times 80 \\
& \text{m}=\dfrac{4230}{80} \\
& \text{m}=52\cdot 88\text{g} \\
\end{align} $
Option (D) is correct.
Note
Daily life is filled with examples of latent heat. Water has a high latent heat of fusion, so turning water into ice requires the removal of more energy than freezing liquid oxygen into solid oxygen, per unit gram. Latent heat plays a very important role in thunderstorms and hurricanes.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

