
Arrange the given fractions in descending order of magnitude:
(i) \[\dfrac{5}{{16}},\dfrac{{13}}{{24}},\dfrac{7}{8}\]
(ii) \[\dfrac{4}{5},\dfrac{7}{{15}},\dfrac{{11}}{{20}},\dfrac{3}{4}\]
(iii) \[\dfrac{5}{7},\dfrac{3}{8},\dfrac{9}{{11}}\]
Answer
432.6k+ views
Hint:First we find the LCM of the denominators of the fractions. Then multiply both the numerator and denominator of each fraction by LCM to make the denominators same. Then by arranging the numerators in descending order after multiplying both the numerator and denominator of each fraction by LCM. After simplifying we get the fractions in descending order.
Complete step by step answer:
(i) Given \[\dfrac{5}{{16}},\dfrac{{13}}{{24}},\dfrac{7}{8}\]----(1)
Then the LCM of \[16,24,8\] is \[48\]
Multiply both the numerator and denominator of each fraction of the expression (1) by \[48\], we get
\[\dfrac{5}{{16}} \times \dfrac{{48}}{{48}},\dfrac{{13}}{{24}} \times \dfrac{{48}}{{48}},\dfrac{7}{8} \times \dfrac{{48}}{{48}}\]
\[ \Rightarrow \]\[\dfrac{{15}}{{48}},\dfrac{{26}}{{48}},\dfrac{{42}}{{48}}\]--(2)
Since the denominator of each fraction of the expression (2) is the same. Hence arranging the numerators in descending order, we get
\[\dfrac{{42}}{{48}},\dfrac{{26}}{{48}},\dfrac{{15}}{{48}}\]---(3)
Simplify the expression (3), we get the given fractions in descending order
i.e., \[\dfrac{7}{8},\dfrac{{13}}{{24}},\dfrac{5}{{16}}\].
(ii) Given \[\dfrac{4}{5},\dfrac{7}{{15}},\dfrac{{11}}{{20}},\dfrac{3}{4}\]----(14)
Then the LCM of \[5,15,20,4\] is \[60\]
Multiply both the numerator and denominator of each fraction of the expression (4) by \[60\], we get
\[\dfrac{4}{5} \times \dfrac{{60}}{{60}},\dfrac{7}{{15}} \times \dfrac{{60}}{{60}},\dfrac{{11}}{{20}} \times \dfrac{{60}}{{60}},\dfrac{3}{4} \times \dfrac{{60}}{{60}}\]
\[ \Rightarrow \]\[\dfrac{{48}}{{60}},\dfrac{{28}}{{60}},\dfrac{{33}}{{60}},\dfrac{{45}}{{60}}\]--(5)
Since the denominator of each fraction of the expression (5) is the same. Hence arranging the numerators in descending order, we get
\[\dfrac{{48}}{{60}},\dfrac{{45}}{{60}},\dfrac{{33}}{{60}},\dfrac{{28}}{{60}}\]---(6)
Simplify the expression (6), we get the given fractions in descending order
i.e., \[\dfrac{4}{5},\dfrac{3}{4},\dfrac{{11}}{{20}},\dfrac{7}{{15}}\].
(iii) Given \[\dfrac{5}{7},\dfrac{3}{8},\dfrac{9}{{11}}\]----(7)
Then the LCM of \[7,8,11\] is \[616\]
Multiply both the numerator and denominator of each fraction of the expression (7) by \[616\], we get
\[\dfrac{5}{7} \times \dfrac{{616}}{{616}},\dfrac{3}{8} \times \dfrac{{616}}{{616}},\dfrac{9}{{11}} \times \dfrac{{616}}{{616}}\]
\[ \Rightarrow \]\[\dfrac{{440}}{{616}},\dfrac{{231}}{{616}},\dfrac{{504}}{{616}}\]--(8)
Since the denominator of each fraction of the expression (8) is the same. Hence arranging the numerators in descending order, we get
\[\dfrac{{504}}{{616}},\dfrac{{440}}{{616}},\dfrac{{231}}{{616}}\]---(9)
Simplify the expression (9), we get the given fractions in descending order
i.e., \[\dfrac{9}{{11}},\dfrac{5}{7},\dfrac{3}{8}\].
Note: To find the LCM of some given integers we use prime factorization. Prime factorization involves breaking down each of the numbers being compared into its product of prime numbers. The LCM is then determined by multiplying the highest power of each prime number together.
Complete step by step answer:
(i) Given \[\dfrac{5}{{16}},\dfrac{{13}}{{24}},\dfrac{7}{8}\]----(1)
Then the LCM of \[16,24,8\] is \[48\]
Multiply both the numerator and denominator of each fraction of the expression (1) by \[48\], we get
\[\dfrac{5}{{16}} \times \dfrac{{48}}{{48}},\dfrac{{13}}{{24}} \times \dfrac{{48}}{{48}},\dfrac{7}{8} \times \dfrac{{48}}{{48}}\]
\[ \Rightarrow \]\[\dfrac{{15}}{{48}},\dfrac{{26}}{{48}},\dfrac{{42}}{{48}}\]--(2)
Since the denominator of each fraction of the expression (2) is the same. Hence arranging the numerators in descending order, we get
\[\dfrac{{42}}{{48}},\dfrac{{26}}{{48}},\dfrac{{15}}{{48}}\]---(3)
Simplify the expression (3), we get the given fractions in descending order
i.e., \[\dfrac{7}{8},\dfrac{{13}}{{24}},\dfrac{5}{{16}}\].
(ii) Given \[\dfrac{4}{5},\dfrac{7}{{15}},\dfrac{{11}}{{20}},\dfrac{3}{4}\]----(14)
Then the LCM of \[5,15,20,4\] is \[60\]
Multiply both the numerator and denominator of each fraction of the expression (4) by \[60\], we get
\[\dfrac{4}{5} \times \dfrac{{60}}{{60}},\dfrac{7}{{15}} \times \dfrac{{60}}{{60}},\dfrac{{11}}{{20}} \times \dfrac{{60}}{{60}},\dfrac{3}{4} \times \dfrac{{60}}{{60}}\]
\[ \Rightarrow \]\[\dfrac{{48}}{{60}},\dfrac{{28}}{{60}},\dfrac{{33}}{{60}},\dfrac{{45}}{{60}}\]--(5)
Since the denominator of each fraction of the expression (5) is the same. Hence arranging the numerators in descending order, we get
\[\dfrac{{48}}{{60}},\dfrac{{45}}{{60}},\dfrac{{33}}{{60}},\dfrac{{28}}{{60}}\]---(6)
Simplify the expression (6), we get the given fractions in descending order
i.e., \[\dfrac{4}{5},\dfrac{3}{4},\dfrac{{11}}{{20}},\dfrac{7}{{15}}\].
(iii) Given \[\dfrac{5}{7},\dfrac{3}{8},\dfrac{9}{{11}}\]----(7)
Then the LCM of \[7,8,11\] is \[616\]
Multiply both the numerator and denominator of each fraction of the expression (7) by \[616\], we get
\[\dfrac{5}{7} \times \dfrac{{616}}{{616}},\dfrac{3}{8} \times \dfrac{{616}}{{616}},\dfrac{9}{{11}} \times \dfrac{{616}}{{616}}\]
\[ \Rightarrow \]\[\dfrac{{440}}{{616}},\dfrac{{231}}{{616}},\dfrac{{504}}{{616}}\]--(8)
Since the denominator of each fraction of the expression (8) is the same. Hence arranging the numerators in descending order, we get
\[\dfrac{{504}}{{616}},\dfrac{{440}}{{616}},\dfrac{{231}}{{616}}\]---(9)
Simplify the expression (9), we get the given fractions in descending order
i.e., \[\dfrac{9}{{11}},\dfrac{5}{7},\dfrac{3}{8}\].
Note: To find the LCM of some given integers we use prime factorization. Prime factorization involves breaking down each of the numbers being compared into its product of prime numbers. The LCM is then determined by multiplying the highest power of each prime number together.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

List some examples of Rabi and Kharif crops class 8 biology CBSE

What is the feminine gender of a stag class 8 english CBSE

Give me the opposite gender of Duck class 8 english CBSE

How many ounces are in 500 mL class 8 maths CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE
