Answer

Verified

474.6k+ views

Hint: The given question is based on compound interest. Try to recall the formulae related to compound interest, where the interest is compounded annually as well as half yearly.

Complete step-by-step answer:

Before proceeding with the problems, we must know the formula used in compound interest.

The formula for compound interest is given as $A=P{{\left( 1+\dfrac{r}{100} \right)}^{n}}$, where $A=$ Amount after $n$ compounding, $P=$ principal amount, $r=$ rate of interest, $n=$ number of times the interest is compounded in the given time.

If $T$ is the total time for which interest is to be calculated, then:

1) $n=T$, if the interest is compounded annually.

2) $n=2T$, if the interest is compounded half-yearly

3) $n=4T$, if the interest is compounded quarterly.

While solving the problem, we will also consider the fact that when the interest is compounded half-yearly, then the rate of interest is also halved (if the rate is given in per annum).

Now, in the question, the given principal amount is $P=Rs.80000$, Rate of interest is $r=10%$ per annum and time is $T=1\dfrac{1}{2}=\dfrac{3}{2}$ years.

First, let’s consider the case when the interest is compounded annually.

Here, time is $1\dfrac{1}{2}$ years. So, for the first year, the interest will be compounded annually. But, for the remaining $6$ months, it would be compounded half-yearly.

So, for the first year, $A=80000{{\left( 1+\dfrac{10}{100} \right)}^{1}}$

$=80000\left( 1.1 \right)$ $=88000$

Now, this amount will be the principal for the next $6$ months. So, $n=2\times \dfrac{1}{2}=1$ , and $r=\dfrac{10}{2}=5%$

So, amount after $1\dfrac{1}{2}$ years is given as $A=88000{{\left( 1+\dfrac{5}{100} \right)}^{1}}$

$\Rightarrow A=88000\times 1.05=Rs.92400$

Hence, the amount to be paid after $1\dfrac{1}{2}$ years, when the interest is compounded annually, is $Rs.92400$ .

Now, when the interest is compounded half yearly, $n=\dfrac{3}{2}\times 2=3$, and the rate of interest $r=\dfrac{10}{2}=5%$ .

So, amount after $1\dfrac{1}{2}$ years is given as $A=80000{{\left( 1+\dfrac{5}{100} \right)}^{3}}$

$=80000{{\left( 1.05 \right)}^{3}}$

$=80000\times 1.157625$

$=92610$

Hence, the amount to be paid after $1\dfrac{1}{2}$ years , when the interest is compounded half yearly, is $Rs.92610$ .

So, the difference between the amounts is given as $Rs.\left( 92610-92400 \right)$

$=Rs.210$

Therefore, the difference between the amount to be paid after $1\dfrac{1}{2}$ years, when the interest is compounded half yearly and annually, is $Rs.210$.

Note: When the interest is compounded annually, students generally make a mistake of taking $n$ as $\dfrac{3}{2}$, which is wrong.

Complete step-by-step answer:

Before proceeding with the problems, we must know the formula used in compound interest.

The formula for compound interest is given as $A=P{{\left( 1+\dfrac{r}{100} \right)}^{n}}$, where $A=$ Amount after $n$ compounding, $P=$ principal amount, $r=$ rate of interest, $n=$ number of times the interest is compounded in the given time.

If $T$ is the total time for which interest is to be calculated, then:

1) $n=T$, if the interest is compounded annually.

2) $n=2T$, if the interest is compounded half-yearly

3) $n=4T$, if the interest is compounded quarterly.

While solving the problem, we will also consider the fact that when the interest is compounded half-yearly, then the rate of interest is also halved (if the rate is given in per annum).

Now, in the question, the given principal amount is $P=Rs.80000$, Rate of interest is $r=10%$ per annum and time is $T=1\dfrac{1}{2}=\dfrac{3}{2}$ years.

First, let’s consider the case when the interest is compounded annually.

Here, time is $1\dfrac{1}{2}$ years. So, for the first year, the interest will be compounded annually. But, for the remaining $6$ months, it would be compounded half-yearly.

So, for the first year, $A=80000{{\left( 1+\dfrac{10}{100} \right)}^{1}}$

$=80000\left( 1.1 \right)$ $=88000$

Now, this amount will be the principal for the next $6$ months. So, $n=2\times \dfrac{1}{2}=1$ , and $r=\dfrac{10}{2}=5%$

So, amount after $1\dfrac{1}{2}$ years is given as $A=88000{{\left( 1+\dfrac{5}{100} \right)}^{1}}$

$\Rightarrow A=88000\times 1.05=Rs.92400$

Hence, the amount to be paid after $1\dfrac{1}{2}$ years, when the interest is compounded annually, is $Rs.92400$ .

Now, when the interest is compounded half yearly, $n=\dfrac{3}{2}\times 2=3$, and the rate of interest $r=\dfrac{10}{2}=5%$ .

So, amount after $1\dfrac{1}{2}$ years is given as $A=80000{{\left( 1+\dfrac{5}{100} \right)}^{3}}$

$=80000{{\left( 1.05 \right)}^{3}}$

$=80000\times 1.157625$

$=92610$

Hence, the amount to be paid after $1\dfrac{1}{2}$ years , when the interest is compounded half yearly, is $Rs.92610$ .

So, the difference between the amounts is given as $Rs.\left( 92610-92400 \right)$

$=Rs.210$

Therefore, the difference between the amount to be paid after $1\dfrac{1}{2}$ years, when the interest is compounded half yearly and annually, is $Rs.210$.

Note: When the interest is compounded annually, students generally make a mistake of taking $n$ as $\dfrac{3}{2}$, which is wrong.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write a letter to the principal requesting him to grant class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE