
What are complementary and supplementary angles?
Answer
596.1k+ views
Hint: Here, we will be proceeding with the help of definition of complementary angles (sum of complementary angles is ${90^0}$) and supplementary angles (sum of supplementary angles is ${180^0}$) and then afterwards observing examples for each case.
Complete step-by-step answer:
The angles whose sum is equal to the measure of ${90^0}$ are called complementary angles. Complementary angles can be easily seen with the help of a diagram.
From Figure 1, we can say that $\angle {\text{DBE}} = {90^0}$ and $\angle {\text{ABE}} = {180^0}$
So, $\angle {\text{ABD}} = \angle {\text{ABE}} - \angle {\text{DBE}} = {180^0} - {90^0} = {90^0}$
Clearly, $
\angle {\text{ABD}} = \angle {\text{ABC}} + \angle {\text{CBD}} \\
\Rightarrow {90^0} = \angle {\text{ABC}} + \angle {\text{CBD}} \\
\Rightarrow \angle {\text{ABC}} + \angle {\text{CBD}} = {90^0}{\text{ }} \to {\text{(1)}} \\
$
From equation (1), we can say that since the sum of angles $\angle {\text{ABC}}$ and $\angle {\text{CBD}}$ is equal to ${90^0}$ so these two angles are known as complementary angles.
The angles whose sum is equal to the measure of ${180^0}$ are called supplementary angles. Supplementary angles can be easily seen with the help of a diagram.
From Figure 2, we can say that $\angle {\text{FGJ}} = {180^0}$
So, $
\angle {\text{FGJ}} = \angle {\text{FGH}} + \angle {\text{HGJ}} \\
\Rightarrow {180^0} = \angle {\text{FGH}} + \angle {\text{HGJ}} \\
\Rightarrow \angle {\text{FGH}} + \angle {\text{HGJ}} = {180^0}{\text{ }} \to {\text{(2)}} \\
$
From equation (2), we can say that since the sum of angles $\angle {\text{FGH}}$ and $\angle {\text{HGJ}}$ is equal to ${180^0}$ so these two angles are known as supplementary angles.
Note: If we consider all the interior angles of any triangle, then we can say that all these interior angles of any triangle constitutes supplementary angles because the sum of all the interior angles of a triangle gives a measure of ${180^0}$ (according to the property of a triangle).
Complete step-by-step answer:
The angles whose sum is equal to the measure of ${90^0}$ are called complementary angles. Complementary angles can be easily seen with the help of a diagram.
From Figure 1, we can say that $\angle {\text{DBE}} = {90^0}$ and $\angle {\text{ABE}} = {180^0}$
So, $\angle {\text{ABD}} = \angle {\text{ABE}} - \angle {\text{DBE}} = {180^0} - {90^0} = {90^0}$
Clearly, $
\angle {\text{ABD}} = \angle {\text{ABC}} + \angle {\text{CBD}} \\
\Rightarrow {90^0} = \angle {\text{ABC}} + \angle {\text{CBD}} \\
\Rightarrow \angle {\text{ABC}} + \angle {\text{CBD}} = {90^0}{\text{ }} \to {\text{(1)}} \\
$
From equation (1), we can say that since the sum of angles $\angle {\text{ABC}}$ and $\angle {\text{CBD}}$ is equal to ${90^0}$ so these two angles are known as complementary angles.
The angles whose sum is equal to the measure of ${180^0}$ are called supplementary angles. Supplementary angles can be easily seen with the help of a diagram.
From Figure 2, we can say that $\angle {\text{FGJ}} = {180^0}$
So, $
\angle {\text{FGJ}} = \angle {\text{FGH}} + \angle {\text{HGJ}} \\
\Rightarrow {180^0} = \angle {\text{FGH}} + \angle {\text{HGJ}} \\
\Rightarrow \angle {\text{FGH}} + \angle {\text{HGJ}} = {180^0}{\text{ }} \to {\text{(2)}} \\
$
From equation (2), we can say that since the sum of angles $\angle {\text{FGH}}$ and $\angle {\text{HGJ}}$ is equal to ${180^0}$ so these two angles are known as supplementary angles.
Note: If we consider all the interior angles of any triangle, then we can say that all these interior angles of any triangle constitutes supplementary angles because the sum of all the interior angles of a triangle gives a measure of ${180^0}$ (according to the property of a triangle).
Recently Updated Pages
Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Hiuen Tsang a Chinese traveller visited India with class 6 social studies CBSE

In which direction do the sunrise and sunset class 6 social science CBSE

In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE


