
How do you apply the double angle formula for $\sin 8x\cos 8x$?
Answer
548.4k+ views
Hint: This problem deals with solving the given equation with trigonometric identities and compound sum angles of trigonometric functions. A compound angle formula or addition formula is a trigonometric identity which expresses a trigonometric function of $\left( {A + B} \right)$ or $\left( {A - B} \right)$in terms of trigonometric functions of $A$ and $B$.
Formula Used:
$ \Rightarrow \sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$
$ \Rightarrow \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$
Here when $A = B,$ then $\sin \left( {A + B} \right) = \sin 2A$, then it is called as the double angle, its formula is given by:
$ \Rightarrow \sin \left( {A + A} \right) = \sin A\cos A + \cos A\sin A$
$\therefore \sin \left( {2A} \right) = 2\sin A\cos A$
Where the double angle for cosine is given by $\cos \left( {A + B} \right) = \cos 2A$, which is expressed below:
$ \Rightarrow \cos \left( {A + A} \right) = \cos A\cos A - \sin A\sin A$
$\therefore \cos \left( {2A} \right) = {\cos ^2}A - {\sin ^2}A$
Complete step-by-step answer:
The given expression is $\sin 8x\cos 8x$, consider this as given below:
$ \Rightarrow \sin 8x\cos 8x$
Consider $\sin \left( {8x} \right)$, we know that from the double angle formula, it can be written as given below:
$ \Rightarrow \sin \left( {8x} \right) = \sin \left( {4x + 4x} \right)$
Now applying the double angle formula to the given expression, as shown:
The expression for $\sin \left( {8x} \right)$ can be written as $\sin \left( {2\left( {4x} \right)} \right)$.
$ \Rightarrow \sin \left( {2\left( {4x} \right)} \right) = 2\sin 4x\cos 4x$
Now consider $\cos \left( {8x} \right)$, we know that from the double angle formula, it can be written as given below:
$ \Rightarrow \cos \left( {8x} \right) = \cos \left( {4x + 4x} \right)$
Now applying the double angle formula to the given expression, as shown:
The expression for $\cos \left( {8x} \right)$ can be written as $\cos \left( {2\left( {4x} \right)} \right)$.
$ \Rightarrow \cos \left( {2\left( {4x} \right)} \right) = {\cos ^2}4x - {\sin ^2}4x$
Now substituting the above expressions, in the given expression $\sin 8x\cos 8x$ as shown below:
$ \Rightarrow \sin 8x\cos 8x = \left( {2\sin 4x\cos 4x} \right)\left( {{{\cos }^2}4x - {{\sin }^2}4x} \right)$
Now simplifying the above expression, as given below:
$ \Rightarrow \sin 8x\cos 8x = 2\left[ {\left( {\sin 4x\cos 4x} \right)\left( {{{\cos }^2}\left( {4x} \right)} \right) - \left( {\sin 4x\cos 4x} \right)\left( {{{\sin }^2}\left( {4x} \right)} \right)} \right]$
$\therefore \sin 8x\cos 8x = 2\left[ {\sin 4x{{\cos }^3}4x - {{\sin }^3}4x\cos 4x} \right]$
Final Answer: The expression $\sin 8x\cos 8x$ is equal to $2\left[ {\sin 4x{{\cos }^3}4x - {{\sin }^3}4x\cos 4x} \right]$.
Note:
Please note that the formula of cosine compound angles formula is used to solve this problem. But there are a few other trigonometric compound angle formulas of sine, cosine and tangent, here the double angle formulas for sine, cosine and tangent are also given below:
$ \Rightarrow \sin \left( {2A} \right) = 2\sin A\cos A$
$ \Rightarrow \cos \left( {2A} \right) = {\cos ^2}A - {\sin ^2}A$
\[ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
$\therefore \tan \left( {2A} \right) = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$
Formula Used:
$ \Rightarrow \sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$
$ \Rightarrow \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$
Here when $A = B,$ then $\sin \left( {A + B} \right) = \sin 2A$, then it is called as the double angle, its formula is given by:
$ \Rightarrow \sin \left( {A + A} \right) = \sin A\cos A + \cos A\sin A$
$\therefore \sin \left( {2A} \right) = 2\sin A\cos A$
Where the double angle for cosine is given by $\cos \left( {A + B} \right) = \cos 2A$, which is expressed below:
$ \Rightarrow \cos \left( {A + A} \right) = \cos A\cos A - \sin A\sin A$
$\therefore \cos \left( {2A} \right) = {\cos ^2}A - {\sin ^2}A$
Complete step-by-step answer:
The given expression is $\sin 8x\cos 8x$, consider this as given below:
$ \Rightarrow \sin 8x\cos 8x$
Consider $\sin \left( {8x} \right)$, we know that from the double angle formula, it can be written as given below:
$ \Rightarrow \sin \left( {8x} \right) = \sin \left( {4x + 4x} \right)$
Now applying the double angle formula to the given expression, as shown:
The expression for $\sin \left( {8x} \right)$ can be written as $\sin \left( {2\left( {4x} \right)} \right)$.
$ \Rightarrow \sin \left( {2\left( {4x} \right)} \right) = 2\sin 4x\cos 4x$
Now consider $\cos \left( {8x} \right)$, we know that from the double angle formula, it can be written as given below:
$ \Rightarrow \cos \left( {8x} \right) = \cos \left( {4x + 4x} \right)$
Now applying the double angle formula to the given expression, as shown:
The expression for $\cos \left( {8x} \right)$ can be written as $\cos \left( {2\left( {4x} \right)} \right)$.
$ \Rightarrow \cos \left( {2\left( {4x} \right)} \right) = {\cos ^2}4x - {\sin ^2}4x$
Now substituting the above expressions, in the given expression $\sin 8x\cos 8x$ as shown below:
$ \Rightarrow \sin 8x\cos 8x = \left( {2\sin 4x\cos 4x} \right)\left( {{{\cos }^2}4x - {{\sin }^2}4x} \right)$
Now simplifying the above expression, as given below:
$ \Rightarrow \sin 8x\cos 8x = 2\left[ {\left( {\sin 4x\cos 4x} \right)\left( {{{\cos }^2}\left( {4x} \right)} \right) - \left( {\sin 4x\cos 4x} \right)\left( {{{\sin }^2}\left( {4x} \right)} \right)} \right]$
$\therefore \sin 8x\cos 8x = 2\left[ {\sin 4x{{\cos }^3}4x - {{\sin }^3}4x\cos 4x} \right]$
Final Answer: The expression $\sin 8x\cos 8x$ is equal to $2\left[ {\sin 4x{{\cos }^3}4x - {{\sin }^3}4x\cos 4x} \right]$.
Note:
Please note that the formula of cosine compound angles formula is used to solve this problem. But there are a few other trigonometric compound angle formulas of sine, cosine and tangent, here the double angle formulas for sine, cosine and tangent are also given below:
$ \Rightarrow \sin \left( {2A} \right) = 2\sin A\cos A$
$ \Rightarrow \cos \left( {2A} \right) = {\cos ^2}A - {\sin ^2}A$
\[ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
$\therefore \tan \left( {2A} \right) = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

