
What annual installment will discharge a debt of INR 1092 due in 3 years at 12 % simple interest?
(a). INR 250
(b). INR 275
(c). INR 300
(d). INR 325
Answer
598.2k+ views
- Hint: The formula to calculate the simple interest for a principal amount P, at a rate of R % per annum for N years is given as \[SI = \dfrac{{PNR}}{{100}}\]. Use this to calculate the annual installment in each year and equate it to the total debt of INR 1092.
Complete step-by-step answer: -
We know that the formula to calculate simple interest for a principal amount P, at a rate of R % per annum for N years is given as follows:
\[SI = \dfrac{{PNR}}{{100}}\]
Let us assume that the annual installment is Rs. X for each year.
In the first year, we pay Rs. X, this amount will produce interest for the next two years. Hence, the total amount generated by the first installment is given as follows:
\[{A_1} = X + \dfrac{{X(2)(12)}}{{100}}\]
Simplifying, we have:
\[{A_1} = X + \dfrac{{6X}}{{25}}\]
\[{A_1} = \dfrac{{25X + 6X}}{{25}}\]
\[{A_1} = \dfrac{{31X}}{{25}}...............(1)\]
In the second year, we pay Rs. X, this amount will produce interest for the next one year. Hence, the total amount generated by the second installment is given as follows:
\[{A_2} = X + \dfrac{{X(1)(12)}}{{100}}\]
Simplifying, we have:
\[{A_2} = X + \dfrac{{3X}}{{25}}\]
\[{A_2} = \dfrac{{25X + 3X}}{{25}}\]
\[{A_2} = \dfrac{{28X}}{{25}}...............(2)\]
In the third year, we settle the installment by paying Rs. X, hence, we have:
\[{A_3} = X...............(3)\]
The total amount at the end of the third year should be equal to INR 1092. Hence, using equations (1), (2), and (3), we have:
\[{A_1} + {A_2} + {A_3} = 1092\]
\[\dfrac{{31X}}{{25}} + \dfrac{{28X}}{{25}} + X = 1092\]
Multiplying both sides by 25, we have:
\[31X + 28X + 25X = 1092 \times 25\]
Simplifying we have:
\[84X = 1092 \times 25\]
Solving for X, we have:
\[X = \dfrac{{1092 \times 25}}{{84}}\]
\[X = 325\]
Hence, the correct answer is option (d).
Note: Note that you should not apply the formula considering the amount INR 1092 as the principal amount. The concept is wrong. Assume the installment as X and then proceed.
Complete step-by-step answer: -
We know that the formula to calculate simple interest for a principal amount P, at a rate of R % per annum for N years is given as follows:
\[SI = \dfrac{{PNR}}{{100}}\]
Let us assume that the annual installment is Rs. X for each year.
In the first year, we pay Rs. X, this amount will produce interest for the next two years. Hence, the total amount generated by the first installment is given as follows:
\[{A_1} = X + \dfrac{{X(2)(12)}}{{100}}\]
Simplifying, we have:
\[{A_1} = X + \dfrac{{6X}}{{25}}\]
\[{A_1} = \dfrac{{25X + 6X}}{{25}}\]
\[{A_1} = \dfrac{{31X}}{{25}}...............(1)\]
In the second year, we pay Rs. X, this amount will produce interest for the next one year. Hence, the total amount generated by the second installment is given as follows:
\[{A_2} = X + \dfrac{{X(1)(12)}}{{100}}\]
Simplifying, we have:
\[{A_2} = X + \dfrac{{3X}}{{25}}\]
\[{A_2} = \dfrac{{25X + 3X}}{{25}}\]
\[{A_2} = \dfrac{{28X}}{{25}}...............(2)\]
In the third year, we settle the installment by paying Rs. X, hence, we have:
\[{A_3} = X...............(3)\]
The total amount at the end of the third year should be equal to INR 1092. Hence, using equations (1), (2), and (3), we have:
\[{A_1} + {A_2} + {A_3} = 1092\]
\[\dfrac{{31X}}{{25}} + \dfrac{{28X}}{{25}} + X = 1092\]
Multiplying both sides by 25, we have:
\[31X + 28X + 25X = 1092 \times 25\]
Simplifying we have:
\[84X = 1092 \times 25\]
Solving for X, we have:
\[X = \dfrac{{1092 \times 25}}{{84}}\]
\[X = 325\]
Hence, the correct answer is option (d).
Note: Note that you should not apply the formula considering the amount INR 1092 as the principal amount. The concept is wrong. Assume the installment as X and then proceed.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

