
What is the angular velocity of the minute hand on a clock?
Answer
511.5k+ views
Hint: The angular velocity can be defined as the rate of the angular position of the rotating body. The rate of the rotation around an axis is usually expressed in the radians or the revolutions per second or per minute.
Formula used:
Angular velocity can be expressed as –
$\omega = \dfrac{{\Delta \theta }}{{\Delta t}}$
Here $\omega $ is the angular velocity, $\Delta \theta $ is the change in the angular rotation and $\Delta t$ is the change in the time
Complete step by step answer:
Minute hand of the clock rotates by $2\pi $ radians in every one hour. Therefore, time taken by a minute hand is one hour. We know that, $t = 1{\text{ hr = 3600s}}$. Now, the angular velocity can be given as –
$\omega = \dfrac{\theta }{t}$
Placing the values in the above expression –
$\omega = \dfrac{{2\pi }}{{3600}}$
Find the factors for the term in the denominator.
$\omega = \dfrac{{2\pi }}{{2 \times 1800}}$
Common factors from the numerator and the denominator cancels each other. Therefore remove from the numerator and the denominator.
$\therefore \omega = \dfrac{\pi }{{1800}}\,rad/s$
Hence, the angular velocity of the minute hand on a clock is $\dfrac{\pi }{{1800}}\,rad/s$.
Note: Remember the angular velocity is also known as angular frequency vector is the vector measure of the rotation rate which refers to how fast an object rotates or resolves with relative to another point. Do not forget to write the specific unit to the resultant value.
Formula used:
Angular velocity can be expressed as –
$\omega = \dfrac{{\Delta \theta }}{{\Delta t}}$
Here $\omega $ is the angular velocity, $\Delta \theta $ is the change in the angular rotation and $\Delta t$ is the change in the time
Complete step by step answer:
Minute hand of the clock rotates by $2\pi $ radians in every one hour. Therefore, time taken by a minute hand is one hour. We know that, $t = 1{\text{ hr = 3600s}}$. Now, the angular velocity can be given as –
$\omega = \dfrac{\theta }{t}$
Placing the values in the above expression –
$\omega = \dfrac{{2\pi }}{{3600}}$
Find the factors for the term in the denominator.
$\omega = \dfrac{{2\pi }}{{2 \times 1800}}$
Common factors from the numerator and the denominator cancels each other. Therefore remove from the numerator and the denominator.
$\therefore \omega = \dfrac{\pi }{{1800}}\,rad/s$
Hence, the angular velocity of the minute hand on a clock is $\dfrac{\pi }{{1800}}\,rad/s$.
Note: Remember the angular velocity is also known as angular frequency vector is the vector measure of the rotation rate which refers to how fast an object rotates or resolves with relative to another point. Do not forget to write the specific unit to the resultant value.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

