Answer
Verified
446.7k+ views
Hint:
In this question given that urn has 5 Red, 4 black and 3 White marbles. And we draw 3 balls in a single draw so that at most 3 are red. At most 3 red balls either contain zero red ball, one red ball, 2 red ball or 3 red ball. We can either calculate this by calculating a single case every time. Or we can proceed it by other ways like calculation total selected – no of ways to select 4 balls.
Complete step by step solution:
A urn contains 5 red , 4 black and 3 white balls . And in a single draw we get at most 3 red balls.
We have to find the no of ways to select at most 3 red ball
= ( 0 Red ball + other 3 balls ) + ( 1 Red ball + other 3 balls) + ( 2 Red ball + other 2 balls )
+ ( 3 Red ball + 1 other )
= no of ways to select 4 balls – no of select 4 red balls
\[ = {}^{12}{C_4} - {}^5{C_4}\]
\[\begin{array}{l}
= \dfrac{{12 \times 11 \times 10 \times 9}}{{4 \times 3 \times 2 \times 1}} - 5\\
= 495 - 5\\
= 490
\end{array}\]
Hence the required number of ways is 490.
Note:
In this type of question students generally confuse at most and at least , more than and less than so take care of it during attempting these types of questions . Almost means max you get 3 red ball in a draw or minimum you can get zero
In this question given that urn has 5 Red, 4 black and 3 White marbles. And we draw 3 balls in a single draw so that at most 3 are red. At most 3 red balls either contain zero red ball, one red ball, 2 red ball or 3 red ball. We can either calculate this by calculating a single case every time. Or we can proceed it by other ways like calculation total selected – no of ways to select 4 balls.
Complete step by step solution:
A urn contains 5 red , 4 black and 3 white balls . And in a single draw we get at most 3 red balls.
We have to find the no of ways to select at most 3 red ball
= ( 0 Red ball + other 3 balls ) + ( 1 Red ball + other 3 balls) + ( 2 Red ball + other 2 balls )
+ ( 3 Red ball + 1 other )
= no of ways to select 4 balls – no of select 4 red balls
\[ = {}^{12}{C_4} - {}^5{C_4}\]
\[\begin{array}{l}
= \dfrac{{12 \times 11 \times 10 \times 9}}{{4 \times 3 \times 2 \times 1}} - 5\\
= 495 - 5\\
= 490
\end{array}\]
Hence the required number of ways is 490.
Note:
In this type of question students generally confuse at most and at least , more than and less than so take care of it during attempting these types of questions . Almost means max you get 3 red ball in a draw or minimum you can get zero
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE