
An object of mass three kilogram is at rest. Now a force $\overrightarrow {\text{F}} = 6{t^2}\mathop i\limits^ \wedge + 4t\mathop j\limits^ \wedge $ is applied on the object then velocity of the object at ${\text{t = 3}}$ second is.
A. ${\text{18}}\mathop i\limits^ \wedge + 3\mathop j\limits^ \wedge $
B. ${\text{18}}\mathop i\limits^ \wedge + 6\mathop j\limits^ \wedge $
C. $3\mathop i\limits^ \wedge + 18\mathop j\limits^ \wedge $
D. ${\text{18}}\mathop i\limits^ \wedge + 4\mathop j\limits^ \wedge $
Answer
606k+ views
Hint: In this question a force of $6{t^2}\mathop i\limits^ \wedge + 4t\mathop j\limits^ \wedge$ is applied on the object therefore consider ${\overrightarrow {\text{F}} _x} = 6{{\text{t}}^2}\mathop {\text{i}}\limits^ \wedge $ and ${{\text{F}}_y} = 4t\mathop j\limits^ \wedge $.
Complete step-by-step answer:
Formula used: ${\text{Acceleration = }}\dfrac{{{\text{Force}}}}{{{\text{Mass}}}}$ i.e. $\overrightarrow {\text{a}} = \dfrac{{\overrightarrow {\text{F}} }}{{\text{m}}}$
Given that,
$\overrightarrow {\text{F}} = 6{t^2}\mathop i\limits^ \wedge + 4t\mathop j\limits^ \wedge $
Mass $ = 3{\text{kg}}$
Time $ = 3$ seconds
Therefore ${\overrightarrow {\text{F}} _x} = 6{t^2}\mathop i\limits^ \wedge $
As we know that $\overrightarrow {\text{a}} = \dfrac{{\overrightarrow {\text{F}} }}{{\text{m}}}$
so, ${{\text{a}}_x} = \dfrac{6}{3}{t^2}\mathop i\limits^ \wedge $
${{\text{a}}_x} = {\text{2}}{{\text{t}}^2}\mathop i\limits^ \wedge $
$\dfrac{{d{v_x}}}{{dt}}{\text{ = 2}}{{\text{t}}^2}\mathop i\limits^ \wedge $
integrating both sides we get:
$
\int\limits_0^{{v_2}} {d{v_x} = \int\limits_0^3 {2{t^2}} dt} \\
{V_x} = \dfrac{{ - 2}}{3}{t^3}\int\limits_0^3 { = 18{\text{m/s}}} \\
$
Now ${{\text{F}}_y} = 4t\mathop j\limits^ \wedge $
therefore ${{\text{a}}_y} = \dfrac{4}{3}t\mathop j\limits^ \wedge $
Integrating both sides we get:
$
\int\limits_0^{{v_y}} {d{v_y} = \int\limits_0^3 {\dfrac{4}{3}t} dt} \\
{V_y} = \dfrac{{{t^2}}}{3}\int\limits_0^3 { = 6{\text{m/s}}} \\
$
Therefore the velocity of object i.e. ${\text{V = 18}}\mathop i\limits^ \wedge + 6\mathop j\limits^ \wedge $
Hence the correct option is B.
Note: In this question the force towards both the axis is given along with mass which is three kilogram hence we calculated the acceleration using the formula after that integrating both the resulted equation from limit zero to three we calculated the velocity of object as ${\text{18}}\mathop i\limits^ \wedge + 6\mathop j\limits^ \wedge $.
Complete step-by-step answer:
Formula used: ${\text{Acceleration = }}\dfrac{{{\text{Force}}}}{{{\text{Mass}}}}$ i.e. $\overrightarrow {\text{a}} = \dfrac{{\overrightarrow {\text{F}} }}{{\text{m}}}$
Given that,
$\overrightarrow {\text{F}} = 6{t^2}\mathop i\limits^ \wedge + 4t\mathop j\limits^ \wedge $
Mass $ = 3{\text{kg}}$
Time $ = 3$ seconds
Therefore ${\overrightarrow {\text{F}} _x} = 6{t^2}\mathop i\limits^ \wedge $
As we know that $\overrightarrow {\text{a}} = \dfrac{{\overrightarrow {\text{F}} }}{{\text{m}}}$
so, ${{\text{a}}_x} = \dfrac{6}{3}{t^2}\mathop i\limits^ \wedge $
${{\text{a}}_x} = {\text{2}}{{\text{t}}^2}\mathop i\limits^ \wedge $
$\dfrac{{d{v_x}}}{{dt}}{\text{ = 2}}{{\text{t}}^2}\mathop i\limits^ \wedge $
integrating both sides we get:
$
\int\limits_0^{{v_2}} {d{v_x} = \int\limits_0^3 {2{t^2}} dt} \\
{V_x} = \dfrac{{ - 2}}{3}{t^3}\int\limits_0^3 { = 18{\text{m/s}}} \\
$
Now ${{\text{F}}_y} = 4t\mathop j\limits^ \wedge $
therefore ${{\text{a}}_y} = \dfrac{4}{3}t\mathop j\limits^ \wedge $
Integrating both sides we get:
$
\int\limits_0^{{v_y}} {d{v_y} = \int\limits_0^3 {\dfrac{4}{3}t} dt} \\
{V_y} = \dfrac{{{t^2}}}{3}\int\limits_0^3 { = 6{\text{m/s}}} \\
$
Therefore the velocity of object i.e. ${\text{V = 18}}\mathop i\limits^ \wedge + 6\mathop j\limits^ \wedge $
Hence the correct option is B.
Note: In this question the force towards both the axis is given along with mass which is three kilogram hence we calculated the acceleration using the formula after that integrating both the resulted equation from limit zero to three we calculated the velocity of object as ${\text{18}}\mathop i\limits^ \wedge + 6\mathop j\limits^ \wedge $.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

