
An empty tank was $\dfrac{2}{5}$ full after 1.5 liters of water was poured into it. The base area of the tank was $250\;c{m^2}$. What was the height of the tank?
Answer
588k+ views
Hint: This is a problem of mensuration and requires the concept of volumes of 3-D objects. We will also require the conversion of liters into square centimeters. The general form of the volume of any 3-D object is given by-
${\text{V}} = {\text{A}} \times {\text{h}}, \text{where A is the area of base and h is the height} $...........(1)
Complete step-by-step solution -
We have been given that the tank is two-fifth full when 1.5 litres of water is poured. This means that 1.5 litres is the two-fifths of the total volume of the tank. Let the volume of the tank be V. Mathematically-
$\dfrac{2}{5} \times {\text{V}} = 1.5$
${\text{V}} = 1.5 \times \dfrac{5}{2} = 3.75\;litres$
We have been given the base area of the tank. We also know that-
$1\;litre\; = \;1\;d{m^3}\;so,\;$
$1\;litre\; = \;\left( {10 \times 10 \times 10} \right)c{m^3}$
$1\;litre\; = \;1000\;c{m^3}$
So, we can write the value of V as-
${\text{V}} = 3.75\;litres$
${\text{V}} = 3.75 \times 1000\;c{m^3}$
${\text{V}} = 3750\;c{m^3}$
Now, to find the height of the tank, we will apply formula (1) as-
${\text{V}} = {\text{A}} \times {\text{h}}$
$3750 = 250{\text{h}}$
${\text{h}} = \dfrac{{3750}}{{250}} = 15\;cm$
This is the required height of the tank.
Note: The students often become confused in such questions because the type of the container is not given, that is, cylindrical, cuboidal, cubic, and so on. But here, we do not require the type of container because we can apply the general formula for volume which is the area of base times the height. Also, we should remember the formula of conversion of units of volume, and never forget to write the units in the final answer.
${\text{V}} = {\text{A}} \times {\text{h}}, \text{where A is the area of base and h is the height} $...........(1)
Complete step-by-step solution -
We have been given that the tank is two-fifth full when 1.5 litres of water is poured. This means that 1.5 litres is the two-fifths of the total volume of the tank. Let the volume of the tank be V. Mathematically-
$\dfrac{2}{5} \times {\text{V}} = 1.5$
${\text{V}} = 1.5 \times \dfrac{5}{2} = 3.75\;litres$
We have been given the base area of the tank. We also know that-
$1\;litre\; = \;1\;d{m^3}\;so,\;$
$1\;litre\; = \;\left( {10 \times 10 \times 10} \right)c{m^3}$
$1\;litre\; = \;1000\;c{m^3}$
So, we can write the value of V as-
${\text{V}} = 3.75\;litres$
${\text{V}} = 3.75 \times 1000\;c{m^3}$
${\text{V}} = 3750\;c{m^3}$
Now, to find the height of the tank, we will apply formula (1) as-
${\text{V}} = {\text{A}} \times {\text{h}}$
$3750 = 250{\text{h}}$
${\text{h}} = \dfrac{{3750}}{{250}} = 15\;cm$
This is the required height of the tank.
Note: The students often become confused in such questions because the type of the container is not given, that is, cylindrical, cuboidal, cubic, and so on. But here, we do not require the type of container because we can apply the general formula for volume which is the area of base times the height. Also, we should remember the formula of conversion of units of volume, and never forget to write the units in the final answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

