Answer
Verified
435.9k+ views
Hint: First try to write the chemical equations , then adding the equations we obtain the final chemical equations where the term ${S^{2 - }}$ should present as we need to find the concentration of this term . putting the values we can obtain the final concentration .
Complete answer:
According to the question the reactions which is occurring here are
${H_2}S \rightleftharpoons H{S^ - } + {H^ + }.......\left( 1 \right)$
$H{S^ - } \rightleftharpoons {S^{2 - }} + {H^ + }......\left( 2 \right)$
Here in question the value of equilibrium constant is given
For equation $1$ Equilibrium constant given $1.0 \times {10^{ - 7}}$ let it be ${k_1}$
For equation $2$ equilibrium constant given $1.2 \times {10^{ - 13}}$ let it be ${k_2}$
Now , add the add both the chemical equation
${H_2}S \rightleftharpoons 2{H^ + } + {S^{2 - }}.....\left( 3 \right)$
Here the equilibrium constant will be $k = \dfrac{{{{\left[ {{H^ + }} \right]}^2}\left[ {{S^{2 - }}} \right]}}{{\left[ {{H_2}S} \right]}}$
When we add any two chemical equations then their equilibrium constant becomes a product .
So , $k = {k_1} \times {k_2}$
Putting the values
$\dfrac{{{{\left[ {{H^ + }} \right]}^2}\left[ {{S^{2 - }}} \right]}}{{\left[ {{H_2}S} \right]}} = {k_1} \times {k_2}$
We need to put the concentration for this look at the equation
${H_2}S \rightleftharpoons 2{H^ + } + {S^{2 - }}.....\left( 3 \right)$
$ \Rightarrow $$\left( {0.10 - \alpha } \right)$ $\left( {0.20 + 2\alpha } \right)$ $\left( \alpha \right)$
$ \Rightarrow $ $\dfrac{{{{\left( {0.20 + 2\alpha } \right)}^2}\left( \alpha \right)}}{{\left( {0.10 - \alpha } \right)}} = 1.2 \times {10^{ - 20}}$
Now the value of $\alpha $ will be very low so we can ignore the terms , and we can write
$ \Rightarrow $$\dfrac{{{{\left( {0.20} \right)}^2}\left( \alpha \right)}}{{\left( {0.10} \right)}} = 1.2 \times {10^{ - 20}}$
$ \Rightarrow $$\alpha = 3.2 \times {10^{ - 20}}$
So the concentration of \[{S^{2 - }}\] is $\left( b \right)3 \times {10^{ - 20}}$
Additional information:
The equation $1$ and $2$ both are reversible reactions which means they can proceed in both forward and backward directions .The double arrow shows the reversible reaction . equilibrium is the point at which the rate of forward reaction is equals to reverse reaction . The equilibrium constant is calculated after the reaction proceeds and then measures each molecule's concentrations.
Note:
Always construct the table for concentration of each reactant and products .Equilibrium constant is independent of initial and final values of reactants and products and also independent of presence of catalyst and inert material present . It only depends upon the temperature .
Complete answer:
According to the question the reactions which is occurring here are
${H_2}S \rightleftharpoons H{S^ - } + {H^ + }.......\left( 1 \right)$
$H{S^ - } \rightleftharpoons {S^{2 - }} + {H^ + }......\left( 2 \right)$
Here in question the value of equilibrium constant is given
For equation $1$ Equilibrium constant given $1.0 \times {10^{ - 7}}$ let it be ${k_1}$
For equation $2$ equilibrium constant given $1.2 \times {10^{ - 13}}$ let it be ${k_2}$
Now , add the add both the chemical equation
${H_2}S \rightleftharpoons 2{H^ + } + {S^{2 - }}.....\left( 3 \right)$
Here the equilibrium constant will be $k = \dfrac{{{{\left[ {{H^ + }} \right]}^2}\left[ {{S^{2 - }}} \right]}}{{\left[ {{H_2}S} \right]}}$
When we add any two chemical equations then their equilibrium constant becomes a product .
So , $k = {k_1} \times {k_2}$
Putting the values
$\dfrac{{{{\left[ {{H^ + }} \right]}^2}\left[ {{S^{2 - }}} \right]}}{{\left[ {{H_2}S} \right]}} = {k_1} \times {k_2}$
We need to put the concentration for this look at the equation
${H_2}S \rightleftharpoons 2{H^ + } + {S^{2 - }}.....\left( 3 \right)$
$ \Rightarrow $$\left( {0.10 - \alpha } \right)$ $\left( {0.20 + 2\alpha } \right)$ $\left( \alpha \right)$
$ \Rightarrow $ $\dfrac{{{{\left( {0.20 + 2\alpha } \right)}^2}\left( \alpha \right)}}{{\left( {0.10 - \alpha } \right)}} = 1.2 \times {10^{ - 20}}$
Now the value of $\alpha $ will be very low so we can ignore the terms , and we can write
$ \Rightarrow $$\dfrac{{{{\left( {0.20} \right)}^2}\left( \alpha \right)}}{{\left( {0.10} \right)}} = 1.2 \times {10^{ - 20}}$
$ \Rightarrow $$\alpha = 3.2 \times {10^{ - 20}}$
So the concentration of \[{S^{2 - }}\] is $\left( b \right)3 \times {10^{ - 20}}$
Additional information:
The equation $1$ and $2$ both are reversible reactions which means they can proceed in both forward and backward directions .The double arrow shows the reversible reaction . equilibrium is the point at which the rate of forward reaction is equals to reverse reaction . The equilibrium constant is calculated after the reaction proceeds and then measures each molecule's concentrations.
Note:
Always construct the table for concentration of each reactant and products .Equilibrium constant is independent of initial and final values of reactants and products and also independent of presence of catalyst and inert material present . It only depends upon the temperature .
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE