Answer
Verified
411k+ views
Hint: First try to write the chemical equations , then adding the equations we obtain the final chemical equations where the term ${S^{2 - }}$ should present as we need to find the concentration of this term . putting the values we can obtain the final concentration .
Complete answer:
According to the question the reactions which is occurring here are
${H_2}S \rightleftharpoons H{S^ - } + {H^ + }.......\left( 1 \right)$
$H{S^ - } \rightleftharpoons {S^{2 - }} + {H^ + }......\left( 2 \right)$
Here in question the value of equilibrium constant is given
For equation $1$ Equilibrium constant given $1.0 \times {10^{ - 7}}$ let it be ${k_1}$
For equation $2$ equilibrium constant given $1.2 \times {10^{ - 13}}$ let it be ${k_2}$
Now , add the add both the chemical equation
${H_2}S \rightleftharpoons 2{H^ + } + {S^{2 - }}.....\left( 3 \right)$
Here the equilibrium constant will be $k = \dfrac{{{{\left[ {{H^ + }} \right]}^2}\left[ {{S^{2 - }}} \right]}}{{\left[ {{H_2}S} \right]}}$
When we add any two chemical equations then their equilibrium constant becomes a product .
So , $k = {k_1} \times {k_2}$
Putting the values
$\dfrac{{{{\left[ {{H^ + }} \right]}^2}\left[ {{S^{2 - }}} \right]}}{{\left[ {{H_2}S} \right]}} = {k_1} \times {k_2}$
We need to put the concentration for this look at the equation
${H_2}S \rightleftharpoons 2{H^ + } + {S^{2 - }}.....\left( 3 \right)$
$ \Rightarrow $$\left( {0.10 - \alpha } \right)$ $\left( {0.20 + 2\alpha } \right)$ $\left( \alpha \right)$
$ \Rightarrow $ $\dfrac{{{{\left( {0.20 + 2\alpha } \right)}^2}\left( \alpha \right)}}{{\left( {0.10 - \alpha } \right)}} = 1.2 \times {10^{ - 20}}$
Now the value of $\alpha $ will be very low so we can ignore the terms , and we can write
$ \Rightarrow $$\dfrac{{{{\left( {0.20} \right)}^2}\left( \alpha \right)}}{{\left( {0.10} \right)}} = 1.2 \times {10^{ - 20}}$
$ \Rightarrow $$\alpha = 3.2 \times {10^{ - 20}}$
So the concentration of \[{S^{2 - }}\] is $\left( b \right)3 \times {10^{ - 20}}$
Additional information:
The equation $1$ and $2$ both are reversible reactions which means they can proceed in both forward and backward directions .The double arrow shows the reversible reaction . equilibrium is the point at which the rate of forward reaction is equals to reverse reaction . The equilibrium constant is calculated after the reaction proceeds and then measures each molecule's concentrations.
Note:
Always construct the table for concentration of each reactant and products .Equilibrium constant is independent of initial and final values of reactants and products and also independent of presence of catalyst and inert material present . It only depends upon the temperature .
Complete answer:
According to the question the reactions which is occurring here are
${H_2}S \rightleftharpoons H{S^ - } + {H^ + }.......\left( 1 \right)$
$H{S^ - } \rightleftharpoons {S^{2 - }} + {H^ + }......\left( 2 \right)$
Here in question the value of equilibrium constant is given
For equation $1$ Equilibrium constant given $1.0 \times {10^{ - 7}}$ let it be ${k_1}$
For equation $2$ equilibrium constant given $1.2 \times {10^{ - 13}}$ let it be ${k_2}$
Now , add the add both the chemical equation
${H_2}S \rightleftharpoons 2{H^ + } + {S^{2 - }}.....\left( 3 \right)$
Here the equilibrium constant will be $k = \dfrac{{{{\left[ {{H^ + }} \right]}^2}\left[ {{S^{2 - }}} \right]}}{{\left[ {{H_2}S} \right]}}$
When we add any two chemical equations then their equilibrium constant becomes a product .
So , $k = {k_1} \times {k_2}$
Putting the values
$\dfrac{{{{\left[ {{H^ + }} \right]}^2}\left[ {{S^{2 - }}} \right]}}{{\left[ {{H_2}S} \right]}} = {k_1} \times {k_2}$
We need to put the concentration for this look at the equation
${H_2}S \rightleftharpoons 2{H^ + } + {S^{2 - }}.....\left( 3 \right)$
$ \Rightarrow $$\left( {0.10 - \alpha } \right)$ $\left( {0.20 + 2\alpha } \right)$ $\left( \alpha \right)$
$ \Rightarrow $ $\dfrac{{{{\left( {0.20 + 2\alpha } \right)}^2}\left( \alpha \right)}}{{\left( {0.10 - \alpha } \right)}} = 1.2 \times {10^{ - 20}}$
Now the value of $\alpha $ will be very low so we can ignore the terms , and we can write
$ \Rightarrow $$\dfrac{{{{\left( {0.20} \right)}^2}\left( \alpha \right)}}{{\left( {0.10} \right)}} = 1.2 \times {10^{ - 20}}$
$ \Rightarrow $$\alpha = 3.2 \times {10^{ - 20}}$
So the concentration of \[{S^{2 - }}\] is $\left( b \right)3 \times {10^{ - 20}}$
Additional information:
The equation $1$ and $2$ both are reversible reactions which means they can proceed in both forward and backward directions .The double arrow shows the reversible reaction . equilibrium is the point at which the rate of forward reaction is equals to reverse reaction . The equilibrium constant is calculated after the reaction proceeds and then measures each molecule's concentrations.
Note:
Always construct the table for concentration of each reactant and products .Equilibrium constant is independent of initial and final values of reactants and products and also independent of presence of catalyst and inert material present . It only depends upon the temperature .
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
10 examples of evaporation in daily life with explanations