
What should be added to $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ so that the resulting polynomial is exactly divisible by $4{{x}^{2}}+3x-2$?
(a)$10-14x$
(b)$4x-10$
(c)$3x-5$
(d)$5-3x$
Answer
588k+ views
Hint: First of all, we have to divide the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ to $4{{x}^{2}}+3x-2$. After division, you will get some remainder. Now, to get the polynomial which should be added to the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ so that the resulting polynomial is divisible by $4{{x}^{2}}+3x-2$. This means we have to subtract the remainder which we got from the division of two given polynomials from this polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ to make this polynomial divisible to $4{{x}^{2}}+3x-2$.
Complete step-by-step answer:
We have given a polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ and we have to add some polynomial to it in such a way that this four degree polynomial becomes divisible by $4{{x}^{2}}+3x-2$.
This clearly shows that, the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ is not exactly divisible by $4{{x}^{2}}+3x-2$ so there must be some remainder when we divide these two polynomials so let us divide the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ by $4{{x}^{2}}+3x-2$.
\[4{{x}^{2}}+3x-2\overset{2{{x}^{2}}+2x-1}{\overline{\left){\begin{align}
& 8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8 \\
& 8{{x}^{4}}+6{{x}^{3}}-4{{x}^{2}} \\
& \dfrac{\begin{matrix}
- & - & + \\
\end{matrix}}{\begin{align}
& 0+8{{x}^{3}}+2{{x}^{2}}+7x \\
& 0+8{{x}^{3}}+6{{x}^{2}}-4x \\
& \dfrac{\begin{matrix}
- & - & - & + \\
\end{matrix}}{\begin{align}
& 0+0-4{{x}^{2}}+11x-8 \\
& 0+0-4{{x}^{2}}-3x+2 \\
& \dfrac{\begin{matrix}
- & - & + & + & - \\
\end{matrix}}{0+0+0+14x-10} \\
\end{align}} \\
\end{align}} \\
\end{align}}\right.}}\]
In the above division of given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ by $4{{x}^{2}}+3x-2$ using long division method, we got the remainder as:
$14x-10$
Now, we are going to subtract the above remainder from the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ so that this polynomial will be exactly divisible by $4{{x}^{2}}+3x-2$.
$\begin{align}
& 8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8-\left( 14x-10 \right) \\
& 8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8+\left( -14x+10 \right).........Eq.(1) \\
\end{align}$
In the above problem, we are asked to find the polynomial which should be added in the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ so that this polynomial will be exactly divisible by $4{{x}^{2}}+3x-2$.
From eq. (1), we can see that we have added $10-14x$ in the polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$. Hence, the polynomial $10-14x$ is the required polynomial which on addition to the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ and then division to this polynomial $4{{x}^{2}}+3x-2$ will give remainder as 0.
Note: The polynomial $10-14x$ that you got in the above solution when added to the polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ and then this polynomial will be exactly divisible to $4{{x}^{2}}+3x-2$. We can check whether the added polynomial is actually exactly divisible by $4{{x}^{2}}+3x-2$ or not.
After addition of $10-14x$ to the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ we will get the polynomial as:
$\begin{align}
& 8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8-14x+10 \\
& =8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}-7x+2 \\
\end{align}$
Now, dividing the above polynomial to $4{{x}^{2}}+3x-2$we get,
\[4{{x}^{2}}+3x-2\overset{2{{x}^{2}}+2x-1}{\overline{\left){\begin{align}
& 8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}-7x+2 \\
& 8{{x}^{4}}+6{{x}^{3}}-4{{x}^{2}} \\
& \dfrac{\begin{matrix}
- & - & + \\
\end{matrix}}{\begin{align}
& 0+8{{x}^{3}}+2{{x}^{2}}-7x \\
& 0+8{{x}^{3}}+6{{x}^{2}}-4x \\
& \dfrac{\begin{matrix}
- & - & - & + \\
\end{matrix}}{\begin{align}
& 0+0-4{{x}^{2}}-3x+2 \\
& 0+0-4{{x}^{2}}-3x+2 \\
& \dfrac{\begin{matrix}
- & - & + & + & - \\
\end{matrix}}{0+0+0+0+0} \\
\end{align}} \\
\end{align}} \\
\end{align}}\right.}}\]
As you can see that, the new polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}-7x+2$ after addition is exactly divisible to $4{{x}^{2}}+3x-2$.
Complete step-by-step answer:
We have given a polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ and we have to add some polynomial to it in such a way that this four degree polynomial becomes divisible by $4{{x}^{2}}+3x-2$.
This clearly shows that, the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ is not exactly divisible by $4{{x}^{2}}+3x-2$ so there must be some remainder when we divide these two polynomials so let us divide the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ by $4{{x}^{2}}+3x-2$.
\[4{{x}^{2}}+3x-2\overset{2{{x}^{2}}+2x-1}{\overline{\left){\begin{align}
& 8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8 \\
& 8{{x}^{4}}+6{{x}^{3}}-4{{x}^{2}} \\
& \dfrac{\begin{matrix}
- & - & + \\
\end{matrix}}{\begin{align}
& 0+8{{x}^{3}}+2{{x}^{2}}+7x \\
& 0+8{{x}^{3}}+6{{x}^{2}}-4x \\
& \dfrac{\begin{matrix}
- & - & - & + \\
\end{matrix}}{\begin{align}
& 0+0-4{{x}^{2}}+11x-8 \\
& 0+0-4{{x}^{2}}-3x+2 \\
& \dfrac{\begin{matrix}
- & - & + & + & - \\
\end{matrix}}{0+0+0+14x-10} \\
\end{align}} \\
\end{align}} \\
\end{align}}\right.}}\]
In the above division of given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ by $4{{x}^{2}}+3x-2$ using long division method, we got the remainder as:
$14x-10$
Now, we are going to subtract the above remainder from the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ so that this polynomial will be exactly divisible by $4{{x}^{2}}+3x-2$.
$\begin{align}
& 8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8-\left( 14x-10 \right) \\
& 8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8+\left( -14x+10 \right).........Eq.(1) \\
\end{align}$
In the above problem, we are asked to find the polynomial which should be added in the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ so that this polynomial will be exactly divisible by $4{{x}^{2}}+3x-2$.
From eq. (1), we can see that we have added $10-14x$ in the polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$. Hence, the polynomial $10-14x$ is the required polynomial which on addition to the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ and then division to this polynomial $4{{x}^{2}}+3x-2$ will give remainder as 0.
Note: The polynomial $10-14x$ that you got in the above solution when added to the polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ and then this polynomial will be exactly divisible to $4{{x}^{2}}+3x-2$. We can check whether the added polynomial is actually exactly divisible by $4{{x}^{2}}+3x-2$ or not.
After addition of $10-14x$ to the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ we will get the polynomial as:
$\begin{align}
& 8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8-14x+10 \\
& =8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}-7x+2 \\
\end{align}$
Now, dividing the above polynomial to $4{{x}^{2}}+3x-2$we get,
\[4{{x}^{2}}+3x-2\overset{2{{x}^{2}}+2x-1}{\overline{\left){\begin{align}
& 8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}-7x+2 \\
& 8{{x}^{4}}+6{{x}^{3}}-4{{x}^{2}} \\
& \dfrac{\begin{matrix}
- & - & + \\
\end{matrix}}{\begin{align}
& 0+8{{x}^{3}}+2{{x}^{2}}-7x \\
& 0+8{{x}^{3}}+6{{x}^{2}}-4x \\
& \dfrac{\begin{matrix}
- & - & - & + \\
\end{matrix}}{\begin{align}
& 0+0-4{{x}^{2}}-3x+2 \\
& 0+0-4{{x}^{2}}-3x+2 \\
& \dfrac{\begin{matrix}
- & - & + & + & - \\
\end{matrix}}{0+0+0+0+0} \\
\end{align}} \\
\end{align}} \\
\end{align}}\right.}}\]
As you can see that, the new polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}-7x+2$ after addition is exactly divisible to $4{{x}^{2}}+3x-2$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

