
What should be added to $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ so that the resulting polynomial is exactly divisible by $4{{x}^{2}}+3x-2$?
(a)$10-14x$
(b)$4x-10$
(c)$3x-5$
(d)$5-3x$
Answer
577.2k+ views
Hint: First of all, we have to divide the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ to $4{{x}^{2}}+3x-2$. After division, you will get some remainder. Now, to get the polynomial which should be added to the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ so that the resulting polynomial is divisible by $4{{x}^{2}}+3x-2$. This means we have to subtract the remainder which we got from the division of two given polynomials from this polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ to make this polynomial divisible to $4{{x}^{2}}+3x-2$.
Complete step-by-step answer:
We have given a polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ and we have to add some polynomial to it in such a way that this four degree polynomial becomes divisible by $4{{x}^{2}}+3x-2$.
This clearly shows that, the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ is not exactly divisible by $4{{x}^{2}}+3x-2$ so there must be some remainder when we divide these two polynomials so let us divide the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ by $4{{x}^{2}}+3x-2$.
\[4{{x}^{2}}+3x-2\overset{2{{x}^{2}}+2x-1}{\overline{\left){\begin{align}
& 8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8 \\
& 8{{x}^{4}}+6{{x}^{3}}-4{{x}^{2}} \\
& \dfrac{\begin{matrix}
- & - & + \\
\end{matrix}}{\begin{align}
& 0+8{{x}^{3}}+2{{x}^{2}}+7x \\
& 0+8{{x}^{3}}+6{{x}^{2}}-4x \\
& \dfrac{\begin{matrix}
- & - & - & + \\
\end{matrix}}{\begin{align}
& 0+0-4{{x}^{2}}+11x-8 \\
& 0+0-4{{x}^{2}}-3x+2 \\
& \dfrac{\begin{matrix}
- & - & + & + & - \\
\end{matrix}}{0+0+0+14x-10} \\
\end{align}} \\
\end{align}} \\
\end{align}}\right.}}\]
In the above division of given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ by $4{{x}^{2}}+3x-2$ using long division method, we got the remainder as:
$14x-10$
Now, we are going to subtract the above remainder from the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ so that this polynomial will be exactly divisible by $4{{x}^{2}}+3x-2$.
$\begin{align}
& 8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8-\left( 14x-10 \right) \\
& 8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8+\left( -14x+10 \right).........Eq.(1) \\
\end{align}$
In the above problem, we are asked to find the polynomial which should be added in the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ so that this polynomial will be exactly divisible by $4{{x}^{2}}+3x-2$.
From eq. (1), we can see that we have added $10-14x$ in the polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$. Hence, the polynomial $10-14x$ is the required polynomial which on addition to the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ and then division to this polynomial $4{{x}^{2}}+3x-2$ will give remainder as 0.
Note: The polynomial $10-14x$ that you got in the above solution when added to the polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ and then this polynomial will be exactly divisible to $4{{x}^{2}}+3x-2$. We can check whether the added polynomial is actually exactly divisible by $4{{x}^{2}}+3x-2$ or not.
After addition of $10-14x$ to the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ we will get the polynomial as:
$\begin{align}
& 8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8-14x+10 \\
& =8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}-7x+2 \\
\end{align}$
Now, dividing the above polynomial to $4{{x}^{2}}+3x-2$we get,
\[4{{x}^{2}}+3x-2\overset{2{{x}^{2}}+2x-1}{\overline{\left){\begin{align}
& 8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}-7x+2 \\
& 8{{x}^{4}}+6{{x}^{3}}-4{{x}^{2}} \\
& \dfrac{\begin{matrix}
- & - & + \\
\end{matrix}}{\begin{align}
& 0+8{{x}^{3}}+2{{x}^{2}}-7x \\
& 0+8{{x}^{3}}+6{{x}^{2}}-4x \\
& \dfrac{\begin{matrix}
- & - & - & + \\
\end{matrix}}{\begin{align}
& 0+0-4{{x}^{2}}-3x+2 \\
& 0+0-4{{x}^{2}}-3x+2 \\
& \dfrac{\begin{matrix}
- & - & + & + & - \\
\end{matrix}}{0+0+0+0+0} \\
\end{align}} \\
\end{align}} \\
\end{align}}\right.}}\]
As you can see that, the new polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}-7x+2$ after addition is exactly divisible to $4{{x}^{2}}+3x-2$.
Complete step-by-step answer:
We have given a polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ and we have to add some polynomial to it in such a way that this four degree polynomial becomes divisible by $4{{x}^{2}}+3x-2$.
This clearly shows that, the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ is not exactly divisible by $4{{x}^{2}}+3x-2$ so there must be some remainder when we divide these two polynomials so let us divide the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ by $4{{x}^{2}}+3x-2$.
\[4{{x}^{2}}+3x-2\overset{2{{x}^{2}}+2x-1}{\overline{\left){\begin{align}
& 8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8 \\
& 8{{x}^{4}}+6{{x}^{3}}-4{{x}^{2}} \\
& \dfrac{\begin{matrix}
- & - & + \\
\end{matrix}}{\begin{align}
& 0+8{{x}^{3}}+2{{x}^{2}}+7x \\
& 0+8{{x}^{3}}+6{{x}^{2}}-4x \\
& \dfrac{\begin{matrix}
- & - & - & + \\
\end{matrix}}{\begin{align}
& 0+0-4{{x}^{2}}+11x-8 \\
& 0+0-4{{x}^{2}}-3x+2 \\
& \dfrac{\begin{matrix}
- & - & + & + & - \\
\end{matrix}}{0+0+0+14x-10} \\
\end{align}} \\
\end{align}} \\
\end{align}}\right.}}\]
In the above division of given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ by $4{{x}^{2}}+3x-2$ using long division method, we got the remainder as:
$14x-10$
Now, we are going to subtract the above remainder from the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ so that this polynomial will be exactly divisible by $4{{x}^{2}}+3x-2$.
$\begin{align}
& 8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8-\left( 14x-10 \right) \\
& 8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8+\left( -14x+10 \right).........Eq.(1) \\
\end{align}$
In the above problem, we are asked to find the polynomial which should be added in the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ so that this polynomial will be exactly divisible by $4{{x}^{2}}+3x-2$.
From eq. (1), we can see that we have added $10-14x$ in the polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$. Hence, the polynomial $10-14x$ is the required polynomial which on addition to the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ and then division to this polynomial $4{{x}^{2}}+3x-2$ will give remainder as 0.
Note: The polynomial $10-14x$ that you got in the above solution when added to the polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ and then this polynomial will be exactly divisible to $4{{x}^{2}}+3x-2$. We can check whether the added polynomial is actually exactly divisible by $4{{x}^{2}}+3x-2$ or not.
After addition of $10-14x$ to the given polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8$ we will get the polynomial as:
$\begin{align}
& 8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}+7x-8-14x+10 \\
& =8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}-7x+2 \\
\end{align}$
Now, dividing the above polynomial to $4{{x}^{2}}+3x-2$we get,
\[4{{x}^{2}}+3x-2\overset{2{{x}^{2}}+2x-1}{\overline{\left){\begin{align}
& 8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}-7x+2 \\
& 8{{x}^{4}}+6{{x}^{3}}-4{{x}^{2}} \\
& \dfrac{\begin{matrix}
- & - & + \\
\end{matrix}}{\begin{align}
& 0+8{{x}^{3}}+2{{x}^{2}}-7x \\
& 0+8{{x}^{3}}+6{{x}^{2}}-4x \\
& \dfrac{\begin{matrix}
- & - & - & + \\
\end{matrix}}{\begin{align}
& 0+0-4{{x}^{2}}-3x+2 \\
& 0+0-4{{x}^{2}}-3x+2 \\
& \dfrac{\begin{matrix}
- & - & + & + & - \\
\end{matrix}}{0+0+0+0+0} \\
\end{align}} \\
\end{align}} \\
\end{align}}\right.}}\]
As you can see that, the new polynomial $8{{x}^{4}}+14{{x}^{3}}-2{{x}^{2}}-7x+2$ after addition is exactly divisible to $4{{x}^{2}}+3x-2$.
Recently Updated Pages
What happens to glucose which enters nephron along class 10 biology CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

When the JanmiKudian Act was passed that granted the class 10 social science CBSE

A sector containing an angle of 120 circ is cut off class 10 maths CBSE

The sum of digits of a two digit number is 13 If t-class-10-maths-ICSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

