Answer
Verified
428.4k+ views
Hint: First calculate the potentials at the point of intersection of the diagonals of the square and at the point D. The potential at the middle of the square is adequate to the algebraic sum of potentials at the middle due each of the fees individually. Then the work done in transferring the charge is the product of change in potential and magnitude of that transferring charge.
Formula used:
Potential at a point $V=\dfrac{1}{4\pi {{\in }_{0}}}\left[ \dfrac{{{q}_{1}}}{{{d}_{1}}}+\dfrac{{{q}_{2}}}{{{d}_{2}}}+...... \right]$
where,
V is the potential
${{\in }_{0}}$ is the permittivity of free space
${{q}_{1}},{{q}_{2}},{{q}_{3}},....$ are the magnitude of charges .
${{d}_{1}},{{d}_{2}},{{d}_{3}},........$ re the distance between the charges.
Work done, $W=q\left[ {{V}_{2}}-{{V}_{_{1}}} \right]$
${{V}_{2}}-{{V}_{1}}$ is the potential difference.
Complete answer:
In the figure above AC and BD are the diagonals of the square. Therefore,
AC=BD
$\Rightarrow $ $\sqrt{{{0.2}^{2}}+{{0.2}^{2}}}=\sqrt{0.08}=0.28m$
Then AO,CO and BO are the half length of the diagonal AC and BD respectively.
Then,
AO = BO =CO
$\Rightarrow $ $\dfrac{0.28}{2}=0.14m$
Potential at O , ${{V}_{o}}=\dfrac{1}{4\pi {{\in }_{0}}}\left[ \dfrac{{{q}_{1}}}{AO}+\dfrac{{{q}_{2}}}{BO}+\dfrac{{{q}_{3}}}{CO} \right]$
$=9\times {{10}^{9}}\left[ \dfrac{2\times {{10}^{0}}}{0.14}+\dfrac{4}{0.14}+\dfrac{8\times {{10}^{11}}}{0.14} \right]$
$=5.143\times {{10}^{22}}volts$
Thus,
Potential at D, ${{V}_{D}}=\dfrac{1}{4\pi {{\in }_{0}}}\left[ \dfrac{{{q}_{1}}}{AD}+\dfrac{{{q}_{2}}}{BD}+\dfrac{{{q}_{_{3}}}}{CD} \right]$
$=9\times {{10}^{9}}\left[ \dfrac{2}{0.2}+\dfrac{4}{0.2}+\dfrac{8\times {{10}^{11}}}{0.2} \right]$
$=3.6\times {{10}^{22}}volts$
Work done, $W=q\left[ {{V}_{0}}-{{V}_{D}} \right]$
$=2\left[ 5.143\times {{10}^{22}}-3.6\times {{10}^{22}} \right]$
$\Rightarrow W=3.086\times {{10}^{22}}Joules$
Hence, the work done in transferring the charge is $3.086\times {{10}^{22}}Joules$ .
Note:
Potential at a point is not due to a single charge. It is the algebraic sum of potentials at the center due each of the charges individually. The work done is calculated in Joules and potential difference is in volts.
Formula used:
Potential at a point $V=\dfrac{1}{4\pi {{\in }_{0}}}\left[ \dfrac{{{q}_{1}}}{{{d}_{1}}}+\dfrac{{{q}_{2}}}{{{d}_{2}}}+...... \right]$
where,
V is the potential
${{\in }_{0}}$ is the permittivity of free space
${{q}_{1}},{{q}_{2}},{{q}_{3}},....$ are the magnitude of charges .
${{d}_{1}},{{d}_{2}},{{d}_{3}},........$ re the distance between the charges.
Work done, $W=q\left[ {{V}_{2}}-{{V}_{_{1}}} \right]$
${{V}_{2}}-{{V}_{1}}$ is the potential difference.
Complete answer:
In the figure above AC and BD are the diagonals of the square. Therefore,
AC=BD
$\Rightarrow $ $\sqrt{{{0.2}^{2}}+{{0.2}^{2}}}=\sqrt{0.08}=0.28m$
Then AO,CO and BO are the half length of the diagonal AC and BD respectively.
Then,
AO = BO =CO
$\Rightarrow $ $\dfrac{0.28}{2}=0.14m$
Potential at O , ${{V}_{o}}=\dfrac{1}{4\pi {{\in }_{0}}}\left[ \dfrac{{{q}_{1}}}{AO}+\dfrac{{{q}_{2}}}{BO}+\dfrac{{{q}_{3}}}{CO} \right]$
$=9\times {{10}^{9}}\left[ \dfrac{2\times {{10}^{0}}}{0.14}+\dfrac{4}{0.14}+\dfrac{8\times {{10}^{11}}}{0.14} \right]$
$=5.143\times {{10}^{22}}volts$
Thus,
Potential at D, ${{V}_{D}}=\dfrac{1}{4\pi {{\in }_{0}}}\left[ \dfrac{{{q}_{1}}}{AD}+\dfrac{{{q}_{2}}}{BD}+\dfrac{{{q}_{_{3}}}}{CD} \right]$
$=9\times {{10}^{9}}\left[ \dfrac{2}{0.2}+\dfrac{4}{0.2}+\dfrac{8\times {{10}^{11}}}{0.2} \right]$
$=3.6\times {{10}^{22}}volts$
Work done, $W=q\left[ {{V}_{0}}-{{V}_{D}} \right]$
$=2\left[ 5.143\times {{10}^{22}}-3.6\times {{10}^{22}} \right]$
$\Rightarrow W=3.086\times {{10}^{22}}Joules$
Hence, the work done in transferring the charge is $3.086\times {{10}^{22}}Joules$ .
Note:
Potential at a point is not due to a single charge. It is the algebraic sum of potentials at the center due each of the charges individually. The work done is calculated in Joules and potential difference is in volts.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE