
ABCD is a square, in which a circle is inscribed touching all the sides of the square. In the four corners of the square, 4 similar circles of equal radii are drawn, containing maximum possible area. What is the ratio of the area of the larger circle to that of the sum of the areas of four smaller circles?
Answer
576.3k+ views
Hint: Assume the area of the larger circle be ‘${R_1}$ ‘, and the area of the smaller circle be ‘${R_2}$’. And then find the area of circle using the standard formula of area \[A = \pi {r^2}\]
Complete step-by-step answer:
Let the area of the larger circle be ‘${R_1}$ ‘, and the area of the smaller circle be ‘${R_2}$’.
Now, see in triangle ACR,
CR = r = AR (radius of the larger circle)
Now, we can also write,
AC = CD + BD + AB
From the figure, we can say CD = r, DB = ${r_1}$
To find AB, we need to apply Pythagora's theorem in triangle ABQ.
Therefore, in triangle ABQ,
AQ = BQ = r1 (radius of the smaller circles)
Therefore, AB = $\sqrt 2 {r_1}$
Therefore, AB = r + ${r_1}(1 + \sqrt 2 )$
Applying Pythagoras theorem in triangle ACR,
$2{r^2} = {(r + {r_1}(1 + \sqrt 2 ))^2}$
$r = {r_1}(3 + 2\sqrt 2 )$
Now, sum of areas of 4 smaller circles = $4\pi {r_1}^2$
And, the area of the larger circle = $\pi {r^2}$
Therefore, the ratio of areas = $\dfrac{{\pi {r^2}}}{{4\pi {r_1}^2}}$
Using equation (1), we get the ratio of areas = $\dfrac{{17 + 2\sqrt 2 }}{4}$
Hence, the answer is = $\dfrac{{17 + 2\sqrt 2 }}{4}$
Note: Whenever these types of questions appear, assume the radius of larger circle as r and smaller circles as $r_1$. Then, by using the figure, apply Pythagora's theorem to find the relation between the radius and then find the areas of the smaller circles and larger circle. At last find their ratio.
Complete step-by-step answer:
Let the area of the larger circle be ‘${R_1}$ ‘, and the area of the smaller circle be ‘${R_2}$’.
Now, see in triangle ACR,
CR = r = AR (radius of the larger circle)
Now, we can also write,
AC = CD + BD + AB
From the figure, we can say CD = r, DB = ${r_1}$
To find AB, we need to apply Pythagora's theorem in triangle ABQ.
Therefore, in triangle ABQ,
AQ = BQ = r1 (radius of the smaller circles)
Therefore, AB = $\sqrt 2 {r_1}$
Therefore, AB = r + ${r_1}(1 + \sqrt 2 )$
Applying Pythagoras theorem in triangle ACR,
$2{r^2} = {(r + {r_1}(1 + \sqrt 2 ))^2}$
$r = {r_1}(3 + 2\sqrt 2 )$
Now, sum of areas of 4 smaller circles = $4\pi {r_1}^2$
And, the area of the larger circle = $\pi {r^2}$
Therefore, the ratio of areas = $\dfrac{{\pi {r^2}}}{{4\pi {r_1}^2}}$
Using equation (1), we get the ratio of areas = $\dfrac{{17 + 2\sqrt 2 }}{4}$
Hence, the answer is = $\dfrac{{17 + 2\sqrt 2 }}{4}$
Note: Whenever these types of questions appear, assume the radius of larger circle as r and smaller circles as $r_1$. Then, by using the figure, apply Pythagora's theorem to find the relation between the radius and then find the areas of the smaller circles and larger circle. At last find their ratio.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

