
ABCD is a parallelogram. If L and M are midpoints on BC and CD respectively, then write AL and AM in terms of AB and AD.
Answer
589.2k+ views
Hint: Join the points A and C. Use vector law of addition for triangles $\Delta ACL$ and $\Delta AMC$. Use the fact that L and M are midpoints of side BC and CD respectively. Also, use that opposite sides of a parallelogram are equal to simplify the equations.
Complete step-by-step answer:
We have a parallelogram ABCD, with L and M as midpoints of BC and CD. We have to write AL and AM in terms of AB and AD.
We will join the points A and C, as shown in the figure.
We know that in a triangle, the vector law of addition says that the sum of two vectors is equal to the third vector.
Thus, in $\Delta ALC$, we have $\overset{\to }{\mathop{AL}}\,+\overset{\to }{\mathop{LC}}\,=\overset{\to }{\mathop{AC}}\,.....\left( 1 \right)$.
As L is the midpoint of BC, we have $\overset{\to }{\mathop{LC}}\,=\dfrac{1}{2}\overset{\to }{\mathop{BC}}\,.....\left( 2 \right)$.
Substituting equation (2) in equation (1), we have $\overset{\to }{\mathop{AL}}\,+\dfrac{1}{2}\overset{\to }{\mathop{BC}}\,=\overset{\to }{\mathop{AC}}\,$.
Rearranging the terms of the above equation, we have $\overset{\to }{\mathop{AL}}\,=\overset{\to }{\mathop{AC}}\,-\dfrac{1}{2}\overset{\to }{\mathop{BC}}\,.....\left( 3 \right)$.
Similarly, in $\Delta AMC$, we have $\overset{\to }{\mathop{AM}}\,+\overset{\to }{\mathop{MC}}\,=\overset{\to }{\mathop{AC}}\,.....\left( 4 \right)$.
As M is the midpoint of CD, we have $\overset{\to }{\mathop{MC}}\,=\dfrac{1}{2}\overset{\to }{\mathop{CD}}\,.....\left( 5 \right)$.
Substituting equation (5) in equation (4), we have $\overset{\to }{\mathop{AM}}\,+\dfrac{1}{2}\overset{\to }{\mathop{CD}}\,=\overset{\to }{\mathop{AC}}\,$.
Rearranging the terms of the above equation, we have $\overset{\to }{\mathop{AM}}\,=\overset{\to }{\mathop{AC}}\,-\dfrac{1}{2}\overset{\to }{\mathop{CD}}\,.....\left( 6 \right)$.
Adding equation (3) and (6), we have $\overset{\to }{\mathop{AL}}\,+\overset{\to }{\mathop{AM}}\,=\overset{\to }{\mathop{AC}}\,-\dfrac{1}{2}\overset{\to }{\mathop{BC}}\,+\overset{\to }{\mathop{AC}}\,-\dfrac{1}{2}\overset{\to }{\mathop{CD}}\,$.
Simplifying the above equation, we have $\overset{\to }{\mathop{AL}}\,+\overset{\to }{\mathop{AM}}\,=\overset{\to }{\mathop{2AC}}\,-\dfrac{1}{2}\left( \overset{\to }{\mathop{BC}}\,+\overset{\to }{\mathop{CD}}\, \right).....\left( 7 \right)$.
As ABCD is a parallelogram, its opposite sides are equal. Thus, we have $\overset{\to }{\mathop{BC}}\,=\overset{\to }{\mathop{AD}}\,,\overset{\to }{\mathop{CD}}\,=\overset{\to }{\mathop{AB}}\,.....\left( 8 \right)$.
Substituting equation (8) in equation (7), we have $\overset{\to }{\mathop{AL}}\,+\overset{\to }{\mathop{AM}}\,=\overset{\to }{\mathop{2AC}}\,-\dfrac{1}{2}\left( \overset{\to }{\mathop{AD}}\,+\overset{\to }{\mathop{AB}}\, \right).....\left( 9 \right)$.
In $\Delta ABC$, we have $\overset{\to }{\mathop{AB}}\,+\overset{\to }{\mathop{BC}}\,=\overset{\to }{\mathop{AC}}\,.....\left( 10 \right)$.
Substituting equation (10) in equation (9), we have $\overset{\to }{\mathop{AL}}\,+\overset{\to }{\mathop{AM}}\,=2\left( \overset{\to }{\mathop{AB}}\,+\overset{\to }{\mathop{BC}}\, \right)-\dfrac{1}{2}\left( \overset{\to }{\mathop{AD}}\,+\overset{\to }{\mathop{AB}}\, \right)$.
Simplifying the above equation, we have $\overset{\to }{\mathop{AL}}\,+\overset{\to }{\mathop{AM}}\,=2\left( \overset{\to }{\mathop{AB}}\,+\overset{\to }{\mathop{AD}}\, \right)-\dfrac{1}{2}\left( \overset{\to }{\mathop{AD}}\,+\overset{\to }{\mathop{AB}}\, \right)=\dfrac{3}{2}\left( \overset{\to }{\mathop{AB}}\,+\overset{\to }{\mathop{AD}}\, \right)$.
Hence, for the given parallelogram ABCD, we have $\overset{\to }{\mathop{AL}}\,+\overset{\to }{\mathop{AM}}\,=\dfrac{3}{2}\left( \overset{\to }{\mathop{AB}}\,+\overset{\to }{\mathop{AD}}\, \right)$.
Note: It’s necessary to use the vector law of addition for triangles to solve this question. Otherwise, we won’t be able to solve the question. One must also remember the fact that the opposite sides of a parallelogram are equal.
Complete step-by-step answer:
We have a parallelogram ABCD, with L and M as midpoints of BC and CD. We have to write AL and AM in terms of AB and AD.
We will join the points A and C, as shown in the figure.
We know that in a triangle, the vector law of addition says that the sum of two vectors is equal to the third vector.
Thus, in $\Delta ALC$, we have $\overset{\to }{\mathop{AL}}\,+\overset{\to }{\mathop{LC}}\,=\overset{\to }{\mathop{AC}}\,.....\left( 1 \right)$.
As L is the midpoint of BC, we have $\overset{\to }{\mathop{LC}}\,=\dfrac{1}{2}\overset{\to }{\mathop{BC}}\,.....\left( 2 \right)$.
Substituting equation (2) in equation (1), we have $\overset{\to }{\mathop{AL}}\,+\dfrac{1}{2}\overset{\to }{\mathop{BC}}\,=\overset{\to }{\mathop{AC}}\,$.
Rearranging the terms of the above equation, we have $\overset{\to }{\mathop{AL}}\,=\overset{\to }{\mathop{AC}}\,-\dfrac{1}{2}\overset{\to }{\mathop{BC}}\,.....\left( 3 \right)$.
Similarly, in $\Delta AMC$, we have $\overset{\to }{\mathop{AM}}\,+\overset{\to }{\mathop{MC}}\,=\overset{\to }{\mathop{AC}}\,.....\left( 4 \right)$.
As M is the midpoint of CD, we have $\overset{\to }{\mathop{MC}}\,=\dfrac{1}{2}\overset{\to }{\mathop{CD}}\,.....\left( 5 \right)$.
Substituting equation (5) in equation (4), we have $\overset{\to }{\mathop{AM}}\,+\dfrac{1}{2}\overset{\to }{\mathop{CD}}\,=\overset{\to }{\mathop{AC}}\,$.
Rearranging the terms of the above equation, we have $\overset{\to }{\mathop{AM}}\,=\overset{\to }{\mathop{AC}}\,-\dfrac{1}{2}\overset{\to }{\mathop{CD}}\,.....\left( 6 \right)$.
Adding equation (3) and (6), we have $\overset{\to }{\mathop{AL}}\,+\overset{\to }{\mathop{AM}}\,=\overset{\to }{\mathop{AC}}\,-\dfrac{1}{2}\overset{\to }{\mathop{BC}}\,+\overset{\to }{\mathop{AC}}\,-\dfrac{1}{2}\overset{\to }{\mathop{CD}}\,$.
Simplifying the above equation, we have $\overset{\to }{\mathop{AL}}\,+\overset{\to }{\mathop{AM}}\,=\overset{\to }{\mathop{2AC}}\,-\dfrac{1}{2}\left( \overset{\to }{\mathop{BC}}\,+\overset{\to }{\mathop{CD}}\, \right).....\left( 7 \right)$.
As ABCD is a parallelogram, its opposite sides are equal. Thus, we have $\overset{\to }{\mathop{BC}}\,=\overset{\to }{\mathop{AD}}\,,\overset{\to }{\mathop{CD}}\,=\overset{\to }{\mathop{AB}}\,.....\left( 8 \right)$.
Substituting equation (8) in equation (7), we have $\overset{\to }{\mathop{AL}}\,+\overset{\to }{\mathop{AM}}\,=\overset{\to }{\mathop{2AC}}\,-\dfrac{1}{2}\left( \overset{\to }{\mathop{AD}}\,+\overset{\to }{\mathop{AB}}\, \right).....\left( 9 \right)$.
In $\Delta ABC$, we have $\overset{\to }{\mathop{AB}}\,+\overset{\to }{\mathop{BC}}\,=\overset{\to }{\mathop{AC}}\,.....\left( 10 \right)$.
Substituting equation (10) in equation (9), we have $\overset{\to }{\mathop{AL}}\,+\overset{\to }{\mathop{AM}}\,=2\left( \overset{\to }{\mathop{AB}}\,+\overset{\to }{\mathop{BC}}\, \right)-\dfrac{1}{2}\left( \overset{\to }{\mathop{AD}}\,+\overset{\to }{\mathop{AB}}\, \right)$.
Simplifying the above equation, we have $\overset{\to }{\mathop{AL}}\,+\overset{\to }{\mathop{AM}}\,=2\left( \overset{\to }{\mathop{AB}}\,+\overset{\to }{\mathop{AD}}\, \right)-\dfrac{1}{2}\left( \overset{\to }{\mathop{AD}}\,+\overset{\to }{\mathop{AB}}\, \right)=\dfrac{3}{2}\left( \overset{\to }{\mathop{AB}}\,+\overset{\to }{\mathop{AD}}\, \right)$.
Hence, for the given parallelogram ABCD, we have $\overset{\to }{\mathop{AL}}\,+\overset{\to }{\mathop{AM}}\,=\dfrac{3}{2}\left( \overset{\to }{\mathop{AB}}\,+\overset{\to }{\mathop{AD}}\, \right)$.
Note: It’s necessary to use the vector law of addition for triangles to solve this question. Otherwise, we won’t be able to solve the question. One must also remember the fact that the opposite sides of a parallelogram are equal.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

