Answer
Verified
429.3k+ views
Hint: We were given that ABC is a right-angled triangle with \[AC=65cm\] , \[\angle B=90{}^\circ \] and \[r=7cm\]. We know that if A, B, and C are angles of a triangle and a, b and c are the lengths of the sides of a triangle and R is the circumradius then \[\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R\]. Now by using the sine rule, we can find the value of R. We know that the sum of angles of a triangle is equal to \[180{}^\circ \]. Now we will find the relation between A and B. We know that if r is inradius of a triangle, A, B and C are angles of a triangle and R is circumradius of a circle then \[r=R\left[ \cos A+\cos B+\cos C-1 \right]\]. Now we can find the value of angle A. We know that if A, B, and C are angles of a triangle and \[\Delta \] is the area of the triangle, then \[\Delta =2{{R}^{2}}\sin A\operatorname{sinC}\]. Now we can find the value of \[\Delta \]. From the question, we were given that the value of the triangle is equal to abc. So, let us find the values of a, b and c by comparing abc with \[\Delta \]. Now let us find the value of \[\left( a-c \right)\].
Complete step-by-step solution
Let us represent the triangle from the given details of the question. From the question, we were given that ABC is a right-angled triangle with \[AC=65cm\] , \[\angle B=90{}^\circ \] and \[r=7cm\].
We know that if A, B, and C are angles of a triangle and a, b and c are the lengths of the sides of a triangle and R is the circumradius then \[\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R\].
Now we will apply sine rule for the triangle ABC, then we get
\[\dfrac{a}{\sin A}=\dfrac{65}{\sin 90}=\dfrac{c}{\sin C}=2R.....(1)\]
From equation (1), we can write
\[\begin{align}
& \Rightarrow \dfrac{65}{\sin 90}=2R \\
& \Rightarrow 2R=65 \\
& \Rightarrow R=\dfrac{65}{2}....(2) \\
\end{align}\]
We know that the angles of a triangle is equal to \[180{}^\circ \].
So, we can write
\[\begin{align}
& \Rightarrow \angle A+\angle B+\angle C=180{}^\circ \\
& \Rightarrow \angle A+90{}^\circ +\angle C=180{}^\circ \\
& \Rightarrow \angle A+\angle C=90{}^\circ \\
& \Rightarrow \angle A=90{}^\circ -\angle C.....(3) \\
\end{align}\]
We know that if r is inradius of a triangle, A, B and C are angles of a triangle and R is circumradius of a circle then \[r=R\left[ \cos A+\cos B+\cos C-1 \right]\].
Now we will apply this formula for the triangle ABC, then we get
\[\Rightarrow r=R\left[ \cos A+\cos B+\cos C-1 \right].....(4)\]
Now let us substitute equation (1), equation (2) and equation (3) in equation (4), then we get
\[\Rightarrow r=\left( \dfrac{65}{2} \right)\left[ \cos A+\cos 90+\cos \left( 90-A \right)-1 \right]\]
We know that \[\cos \left( 90-A \right)=\sin A\].
So, now we will write
\[\Rightarrow r=\left( \dfrac{65}{2} \right)\left[ \cos A+\operatorname{sinA}-1 \right]\]
We know that \[r=7cm\]. So, we will write
\[\begin{align}
& \Rightarrow \dfrac{14}{65}=\cos A+\operatorname{sinA}-1 \\
& \Rightarrow \cos A+\sin A=1+\dfrac{14}{65} \\
& \Rightarrow \cos A+\sin A=\dfrac{79}{65}.......(5) \\
\end{align}\]
Now we will square equation (5) on both sides, then we get
\[\Rightarrow {{\left( \cos A+\operatorname{sinA} \right)}^{2}}={{\left( \dfrac{79}{65} \right)}^{2}}\]
We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\]
\[\Rightarrow {{\cos }^{2}}A+{{\sin }^{2}}A+2\operatorname{sinAcosA}={{\left( \dfrac{79}{65} \right)}^{2}}\]
We know that \[\sin 2A=2\sin A\cos A\].
\[\Rightarrow {{\cos }^{2}}A+{{\sin }^{2}}A+\sin 2A={{\left( \dfrac{79}{65} \right)}^{2}}\]
We know that \[{{\cos }^{2}}A+{{\sin }^{2}}A=1\].
\[\Rightarrow 1+\sin 2A={{\left( \dfrac{79}{65} \right)}^{2}}\]
\[\begin{align}
& \Rightarrow \sin 2A={{\left( \dfrac{79}{65} \right)}^{2}}-1 \\
& \Rightarrow \sin 2A=\dfrac{{{\left( 79 \right)}^{2}}-{{\left( 65 \right)}^{2}}}{{{\left( 65 \right)}^{2}}}.....(6) \\
\end{align}\]
We know that if A, B and C are angles of a triangle and \[\Delta \] is the area of the triangle, then
\[\Delta =2{{R}^{2}}\sin A\operatorname{sinC}\].
So, let us assume the area of the triangle is equal to \[\Delta \].
\[\Rightarrow \Delta =2{{R}^{2}}\sin A\operatorname{sinC}.....(7)\]
So, let us substitute equation (2), equation (3) in equation (7), then we get
\[\begin{align}
& \Rightarrow \Delta =2{{\left( \dfrac{65}{2} \right)}^{2}}\sin A\sin \left( 90-A \right) \\
& \Rightarrow \Delta =2{{\left( \dfrac{65}{2} \right)}^{2}}\sin A\cos A \\
& \Rightarrow \Delta ={{\left( \dfrac{65}{2} \right)}^{2}}\left( 2\sin A\cos A \right) \\
& \Rightarrow \Delta ={{\left( \dfrac{65}{2} \right)}^{2}}\left( \sin 2A \right).....(8) \\
\end{align}\]
Now let us substitute equation (6) in equation (8), then we get
\[\Rightarrow \Delta ={{\left( \dfrac{65}{2} \right)}^{2}}\left( \dfrac{{{\left( 79 \right)}^{2}}-{{\left( 65 \right)}^{2}}}{{{\left( 65 \right)}^{2}}} \right)\]
\[\Rightarrow \Delta ={{\left( \dfrac{1}{2} \right)}^{2}}\left( {{\left( 79 \right)}^{2}}-{{\left( 65 \right)}^{2}} \right)\]
We know that \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\].
\[\begin{align}
& \Rightarrow \Delta ={{\left( \dfrac{1}{2} \right)}^{2}}\left( 79+65 \right)\left( 79-65 \right) \\
& \Rightarrow \Delta =\dfrac{\left( 144 \right)\left( 14 \right)}{4} \\
& \Rightarrow \Delta =504.....(9) \\
\end{align}\]
So, it is clear that the value of \[\Delta \] is equal to 504.
From the question, it is clear that abc is equal to 504.
\[\begin{align}
& a=5....(10) \\
& b=0.....(11) \\
& c=4.....(12) \\
\end{align}\]
Then from equation (10) and equation (11), we will get
\[\begin{align}
& \Rightarrow a-c=5-4 \\
& \Rightarrow a-c=1.....(10) \\
\end{align}\]
So, the value of \[\left( a-c \right)\] is equal to 1.
Hence, option A is correct.
Note: Students should know that if A, B, and C are angles of a triangle and a, b and c are the lengths of the sides of a triangle and R is the circumradius then \[\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R\]. Students should also avoid calculation mistakes while solving this problem. If a small mistake is made, then we cannot get the correct answer to this problem.
Complete step-by-step solution
Let us represent the triangle from the given details of the question. From the question, we were given that ABC is a right-angled triangle with \[AC=65cm\] , \[\angle B=90{}^\circ \] and \[r=7cm\].
We know that if A, B, and C are angles of a triangle and a, b and c are the lengths of the sides of a triangle and R is the circumradius then \[\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R\].
Now we will apply sine rule for the triangle ABC, then we get
\[\dfrac{a}{\sin A}=\dfrac{65}{\sin 90}=\dfrac{c}{\sin C}=2R.....(1)\]
From equation (1), we can write
\[\begin{align}
& \Rightarrow \dfrac{65}{\sin 90}=2R \\
& \Rightarrow 2R=65 \\
& \Rightarrow R=\dfrac{65}{2}....(2) \\
\end{align}\]
We know that the angles of a triangle is equal to \[180{}^\circ \].
So, we can write
\[\begin{align}
& \Rightarrow \angle A+\angle B+\angle C=180{}^\circ \\
& \Rightarrow \angle A+90{}^\circ +\angle C=180{}^\circ \\
& \Rightarrow \angle A+\angle C=90{}^\circ \\
& \Rightarrow \angle A=90{}^\circ -\angle C.....(3) \\
\end{align}\]
We know that if r is inradius of a triangle, A, B and C are angles of a triangle and R is circumradius of a circle then \[r=R\left[ \cos A+\cos B+\cos C-1 \right]\].
Now we will apply this formula for the triangle ABC, then we get
\[\Rightarrow r=R\left[ \cos A+\cos B+\cos C-1 \right].....(4)\]
Now let us substitute equation (1), equation (2) and equation (3) in equation (4), then we get
\[\Rightarrow r=\left( \dfrac{65}{2} \right)\left[ \cos A+\cos 90+\cos \left( 90-A \right)-1 \right]\]
We know that \[\cos \left( 90-A \right)=\sin A\].
So, now we will write
\[\Rightarrow r=\left( \dfrac{65}{2} \right)\left[ \cos A+\operatorname{sinA}-1 \right]\]
We know that \[r=7cm\]. So, we will write
\[\begin{align}
& \Rightarrow \dfrac{14}{65}=\cos A+\operatorname{sinA}-1 \\
& \Rightarrow \cos A+\sin A=1+\dfrac{14}{65} \\
& \Rightarrow \cos A+\sin A=\dfrac{79}{65}.......(5) \\
\end{align}\]
Now we will square equation (5) on both sides, then we get
\[\Rightarrow {{\left( \cos A+\operatorname{sinA} \right)}^{2}}={{\left( \dfrac{79}{65} \right)}^{2}}\]
We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\]
\[\Rightarrow {{\cos }^{2}}A+{{\sin }^{2}}A+2\operatorname{sinAcosA}={{\left( \dfrac{79}{65} \right)}^{2}}\]
We know that \[\sin 2A=2\sin A\cos A\].
\[\Rightarrow {{\cos }^{2}}A+{{\sin }^{2}}A+\sin 2A={{\left( \dfrac{79}{65} \right)}^{2}}\]
We know that \[{{\cos }^{2}}A+{{\sin }^{2}}A=1\].
\[\Rightarrow 1+\sin 2A={{\left( \dfrac{79}{65} \right)}^{2}}\]
\[\begin{align}
& \Rightarrow \sin 2A={{\left( \dfrac{79}{65} \right)}^{2}}-1 \\
& \Rightarrow \sin 2A=\dfrac{{{\left( 79 \right)}^{2}}-{{\left( 65 \right)}^{2}}}{{{\left( 65 \right)}^{2}}}.....(6) \\
\end{align}\]
We know that if A, B and C are angles of a triangle and \[\Delta \] is the area of the triangle, then
\[\Delta =2{{R}^{2}}\sin A\operatorname{sinC}\].
So, let us assume the area of the triangle is equal to \[\Delta \].
\[\Rightarrow \Delta =2{{R}^{2}}\sin A\operatorname{sinC}.....(7)\]
So, let us substitute equation (2), equation (3) in equation (7), then we get
\[\begin{align}
& \Rightarrow \Delta =2{{\left( \dfrac{65}{2} \right)}^{2}}\sin A\sin \left( 90-A \right) \\
& \Rightarrow \Delta =2{{\left( \dfrac{65}{2} \right)}^{2}}\sin A\cos A \\
& \Rightarrow \Delta ={{\left( \dfrac{65}{2} \right)}^{2}}\left( 2\sin A\cos A \right) \\
& \Rightarrow \Delta ={{\left( \dfrac{65}{2} \right)}^{2}}\left( \sin 2A \right).....(8) \\
\end{align}\]
Now let us substitute equation (6) in equation (8), then we get
\[\Rightarrow \Delta ={{\left( \dfrac{65}{2} \right)}^{2}}\left( \dfrac{{{\left( 79 \right)}^{2}}-{{\left( 65 \right)}^{2}}}{{{\left( 65 \right)}^{2}}} \right)\]
\[\Rightarrow \Delta ={{\left( \dfrac{1}{2} \right)}^{2}}\left( {{\left( 79 \right)}^{2}}-{{\left( 65 \right)}^{2}} \right)\]
We know that \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\].
\[\begin{align}
& \Rightarrow \Delta ={{\left( \dfrac{1}{2} \right)}^{2}}\left( 79+65 \right)\left( 79-65 \right) \\
& \Rightarrow \Delta =\dfrac{\left( 144 \right)\left( 14 \right)}{4} \\
& \Rightarrow \Delta =504.....(9) \\
\end{align}\]
So, it is clear that the value of \[\Delta \] is equal to 504.
From the question, it is clear that abc is equal to 504.
\[\begin{align}
& a=5....(10) \\
& b=0.....(11) \\
& c=4.....(12) \\
\end{align}\]
Then from equation (10) and equation (11), we will get
\[\begin{align}
& \Rightarrow a-c=5-4 \\
& \Rightarrow a-c=1.....(10) \\
\end{align}\]
So, the value of \[\left( a-c \right)\] is equal to 1.
Hence, option A is correct.
Note: Students should know that if A, B, and C are angles of a triangle and a, b and c are the lengths of the sides of a triangle and R is the circumradius then \[\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R\]. Students should also avoid calculation mistakes while solving this problem. If a small mistake is made, then we cannot get the correct answer to this problem.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
Difference Between Plant Cell and Animal Cell
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE