
${{a}_{1}},{{a}_{2}},{{a}_{3}}..........{{a}_{10}}$ are in an arithmetic progression and ${{h}_{1}},{{h}_{2}},{{h}_{3}}..........{{h}_{10}}$ is in harmonic progression. The first terms of both the series are ${{a}_{1}}={{h}_{1}}=2$ and the last terms ${{a}_{10}}={{h}_{10}}=3$. Then find out the value of ${{a}_{4}}{{h}_{7}}$.
A. $2$
B. $3$
C. $5$
D. $6$
Answer
587.7k+ views
Hint: We will find the common difference for the first sequence by applying the formula for ${{n}^{th}}$ term that is ${{a}_{n}}=a+\left( n-1 \right)d$, where we will take $n=10$ , then after finding the common difference and then find the value of ${{a}_{4}}$ and then for the harmonic progression we will convert it into arithmetic progression and then again follow the same procedure and find the value of ${{h}_{7}}$ and then put those values into ${{a}_{4}}.{{h}_{7}}$ and get the answer.
Complete step-by-step answer:
We know that if a series is in arithmetic progression then the formula for ${{n}^{th}}$ term is as follows:
${{a}_{n}}=a+\left( n-1 \right)d$ ,
Where,
${{a}_{n}}={{n}^{th}}$ term of the A.P.
$a=$first term ,
$n=$ the total number of terms ,
$d=$ common difference
Now, we are given the first sequence as: ${{a}_{1}},{{a}_{2}},{{a}_{3}}..........{{a}_{10}}$ and also given that ${{a}_{1}}=2$ and ${{a}_{10}}=3$, so we will apply the formula for ${{n}^{th}}$ term, for $n=10$ :
Therefore,
$\begin{align}
& \Rightarrow {{a}_{n}}=a+\left( n-1 \right)d \\
& \Rightarrow 3=2+\left( 10-1 \right)d \\
& \Rightarrow 3-2=9d\Rightarrow d=\dfrac{1}{9} \\
\end{align}$
So, the common difference is: $d=\dfrac{1}{9}$
Now to find the value of ${{a}_{4}}$, we will apply the formula for ${{a}_{n}}$ for $n=4$ , $a=2$ and $d=\dfrac{1}{9}$ :
$\begin{align}
& {{a}_{n}}=a+\left( n-1 \right)d\Rightarrow {{a}_{4}}=2+\left( 4-1 \right)\dfrac{1}{9} \\
& {{a}_{4}}=2+\left( 3\times \dfrac{1}{9} \right)\Rightarrow {{a}_{4}}=2+\dfrac{1}{3} \\
& {{a}_{4}}=\dfrac{7}{3}\text{ }................\text{ Equation 1} \\
\end{align}$
Now, it is given that ${{h}_{1}},{{h}_{2}},{{h}_{3}}..........{{h}_{10}}$ is in harmonic progression which means that \[\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},\dfrac{1}{{{h}_{3}}},............\dfrac{1}{{{h}_{n}}}\] is in A.P.
We also know that the nth term of the Harmonic Progression (H.P.) :
$\dfrac{1}{{{h}_{n}}}=\dfrac{1}{a+\left( n-1 \right)d}$
Where,
${{h}_{n}}={{n}^{th}}$ term of the A.P.
$a=$first term ,
$n=$ the total number of terms ,
$d=$ common difference
To find the common difference we will apply this formula for ${{h}_{1}}=2$ and ${{h}_{10}}=3$, so we will apply the formula for ${{n}^{th}}$ term, for $n=10$ :
$\begin{align}
& \Rightarrow \dfrac{1}{{{h}_{10}}}=\dfrac{1}{{{h}_{1}}}+\left( 10-1 \right)d\Rightarrow d=\dfrac{\dfrac{1}{{{h}_{10}}}-\dfrac{1}{{{h}_{1}}}}{9} \\
& \Rightarrow d=\dfrac{\dfrac{1}{3}-\dfrac{1}{2}}{9}\Rightarrow d=\dfrac{\dfrac{2-3}{6}}{9}\Rightarrow d=\dfrac{\dfrac{-1}{6}}{9} \\
& \Rightarrow d=\dfrac{-1}{54} \\
\end{align}$
Now to find the value of ${{h}_{7}}$, we will apply the formula for ${{a}_{n}}$ for $n=7$ , $a=\dfrac{1}{{{h}_{1}}}=\dfrac{1}{2}$ and $d=\dfrac{-1}{54}$ :
$\begin{align}
& {{a}_{n}}=a+\left( n-1 \right)d\Rightarrow \dfrac{1}{{{h}_{7}}}=\dfrac{1}{{{h}_{1}}}+\left( 7-1 \right)\left( \dfrac{-1}{54} \right) \\
& \dfrac{1}{{{h}_{7}}}=\dfrac{1}{2}-6\left( \dfrac{1}{54} \right)\Rightarrow \dfrac{1}{{{h}_{7}}}=\dfrac{7}{18} \\
& {{h}_{7}}=\dfrac{18}{7}\text{ }...............\text{ Equation 2} \\
\end{align}$
Now to find out the value of ${{a}_{4}}{{h}_{7}}$ we will put the values from equation 1 and equation 2 :
$\begin{align}
& {{a}_{4}}.{{h}_{7}}=\dfrac{7}{3}\times \dfrac{18}{7}=6 \\
& {{a}_{4}}.{{h}_{7}}=6 \\
\end{align}$
So, the correct option is D.
Note: Students can make mistakes while applying the formula for ${{n}^{th}}$ term for the harmonic progression as the values are in harmonic progression. The formula is the same for the arithmetic progression and the sequence in harmonic progression as the reciprocals are in AP.
Complete step-by-step answer:
We know that if a series is in arithmetic progression then the formula for ${{n}^{th}}$ term is as follows:
${{a}_{n}}=a+\left( n-1 \right)d$ ,
Where,
${{a}_{n}}={{n}^{th}}$ term of the A.P.
$a=$first term ,
$n=$ the total number of terms ,
$d=$ common difference
Now, we are given the first sequence as: ${{a}_{1}},{{a}_{2}},{{a}_{3}}..........{{a}_{10}}$ and also given that ${{a}_{1}}=2$ and ${{a}_{10}}=3$, so we will apply the formula for ${{n}^{th}}$ term, for $n=10$ :
Therefore,
$\begin{align}
& \Rightarrow {{a}_{n}}=a+\left( n-1 \right)d \\
& \Rightarrow 3=2+\left( 10-1 \right)d \\
& \Rightarrow 3-2=9d\Rightarrow d=\dfrac{1}{9} \\
\end{align}$
So, the common difference is: $d=\dfrac{1}{9}$
Now to find the value of ${{a}_{4}}$, we will apply the formula for ${{a}_{n}}$ for $n=4$ , $a=2$ and $d=\dfrac{1}{9}$ :
$\begin{align}
& {{a}_{n}}=a+\left( n-1 \right)d\Rightarrow {{a}_{4}}=2+\left( 4-1 \right)\dfrac{1}{9} \\
& {{a}_{4}}=2+\left( 3\times \dfrac{1}{9} \right)\Rightarrow {{a}_{4}}=2+\dfrac{1}{3} \\
& {{a}_{4}}=\dfrac{7}{3}\text{ }................\text{ Equation 1} \\
\end{align}$
Now, it is given that ${{h}_{1}},{{h}_{2}},{{h}_{3}}..........{{h}_{10}}$ is in harmonic progression which means that \[\dfrac{1}{{{h}_{1}}},\dfrac{1}{{{h}_{2}}},\dfrac{1}{{{h}_{3}}},............\dfrac{1}{{{h}_{n}}}\] is in A.P.
We also know that the nth term of the Harmonic Progression (H.P.) :
$\dfrac{1}{{{h}_{n}}}=\dfrac{1}{a+\left( n-1 \right)d}$
Where,
${{h}_{n}}={{n}^{th}}$ term of the A.P.
$a=$first term ,
$n=$ the total number of terms ,
$d=$ common difference
To find the common difference we will apply this formula for ${{h}_{1}}=2$ and ${{h}_{10}}=3$, so we will apply the formula for ${{n}^{th}}$ term, for $n=10$ :
$\begin{align}
& \Rightarrow \dfrac{1}{{{h}_{10}}}=\dfrac{1}{{{h}_{1}}}+\left( 10-1 \right)d\Rightarrow d=\dfrac{\dfrac{1}{{{h}_{10}}}-\dfrac{1}{{{h}_{1}}}}{9} \\
& \Rightarrow d=\dfrac{\dfrac{1}{3}-\dfrac{1}{2}}{9}\Rightarrow d=\dfrac{\dfrac{2-3}{6}}{9}\Rightarrow d=\dfrac{\dfrac{-1}{6}}{9} \\
& \Rightarrow d=\dfrac{-1}{54} \\
\end{align}$
Now to find the value of ${{h}_{7}}$, we will apply the formula for ${{a}_{n}}$ for $n=7$ , $a=\dfrac{1}{{{h}_{1}}}=\dfrac{1}{2}$ and $d=\dfrac{-1}{54}$ :
$\begin{align}
& {{a}_{n}}=a+\left( n-1 \right)d\Rightarrow \dfrac{1}{{{h}_{7}}}=\dfrac{1}{{{h}_{1}}}+\left( 7-1 \right)\left( \dfrac{-1}{54} \right) \\
& \dfrac{1}{{{h}_{7}}}=\dfrac{1}{2}-6\left( \dfrac{1}{54} \right)\Rightarrow \dfrac{1}{{{h}_{7}}}=\dfrac{7}{18} \\
& {{h}_{7}}=\dfrac{18}{7}\text{ }...............\text{ Equation 2} \\
\end{align}$
Now to find out the value of ${{a}_{4}}{{h}_{7}}$ we will put the values from equation 1 and equation 2 :
$\begin{align}
& {{a}_{4}}.{{h}_{7}}=\dfrac{7}{3}\times \dfrac{18}{7}=6 \\
& {{a}_{4}}.{{h}_{7}}=6 \\
\end{align}$
So, the correct option is D.
Note: Students can make mistakes while applying the formula for ${{n}^{th}}$ term for the harmonic progression as the values are in harmonic progression. The formula is the same for the arithmetic progression and the sequence in harmonic progression as the reciprocals are in AP.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

