A wire has a mass $(0.3 \pm 0.003)g$, radius $(0.5 \pm 0.005)mm$ and length $(6 \pm 0.06)cm$. The maximum percentage error in the measurement of its density is -
A). 1
B). 2
C). 3
D). 4
Answer
Verified
477.9k+ views
Hint: In order to deal with this question we will use the formula of density which is the ratio of the mass of wire to the mass of volume, then we will proceed further by writing it in the form of error percentage.
Formula used: $V = \pi {r^2}L,\rho = \dfrac{m}{V} = \dfrac{m}{{\pi {r^2}L}},\log \dfrac{a}{b} = \log a - \log b$
Complete step-by-step solution:
Given that
$
m + \Delta m = (0.3 \pm 0.003)g \\
r + \Delta r = (0.5 \pm 0.005)mm \\
L + \Delta L = (6 \pm 0.06)cm $
We know that the volume of the wire is given by, $V = \pi {r^2}L$
Thus, the density of the wire, $\rho = \dfrac{m}{V} = \dfrac{m}{{\pi {r^2}L}}$
Taking log on both the sides, we get
$
\because \rho = \dfrac{m}{{\pi {r^2}L}} \\
\Rightarrow \log (\rho ) = \log \left( {\dfrac{m}{{\pi {r^2}L}}} \right) \\
\Rightarrow \log (\rho ) = \log \left( m \right) - \log (\pi {r^2}L){\text{ }}\left[ {\because \log \dfrac{a}{b} = \log a - \log b} \right] $
Now after differentiating both the side, we get:
$
\Rightarrow \dfrac{1}{\rho }d\rho = \dfrac{1}{m}dm + 2\dfrac{1}{r}dr + \dfrac{1}{L}dL \\
\Rightarrow \dfrac{{\Delta \rho }}{\rho } = \dfrac{{\Delta m}}{m} + 2\dfrac{{\Delta r}}{r} + \dfrac{{\Delta L}}{L} \\
\therefore \dfrac{{\Delta \rho }}{\rho } \times 100 = \dfrac{{\Delta m}}{m} \times 100 + 2\dfrac{{\Delta r}}{r} \times 100 + \dfrac{{\Delta L}}{L} \times 100 $
Notice that we had a negative sign which changed to positive after differentiating , this is because we are trying to compute the error in the measurement or the deviation of the result so it is cumulative i.e. irrespective of sign it will be positive.
Now, Let us substitute all the values known to us in the above-found formula, we get
$
\dfrac{{\Delta \rho }}{\rho } \times 100 = \dfrac{{\Delta m}}{m} \times 100 + 2\dfrac{{\Delta r}}{r} \times 100 + \dfrac{{\Delta L}}{L} \times 100 \\
\Rightarrow \dfrac{{\Delta \rho }}{\rho } \times 100 = \dfrac{{0.003}}{{0.3}} \times 100 + 2\dfrac{{0.005}}{{0.5}} \times 100 + \dfrac{{0.06}}{6} \times 100 \\
\Rightarrow \dfrac{{\Delta \rho }}{\rho } \times 100 = 1 + 2 + 1 \\
\Rightarrow \dfrac{{\Delta \rho }}{\rho } \times 100 = 4\% $
Hence, the maximum percentage error in the measurement of its density is 4%
So, the correct answer is option D.
Note: Error is the difference between the actual value of any physical quantity and its calculated value. In physics, there are essentially three types of mistakes, spontaneous mistakes, blunders, and systematic errors. In some data, the approximation error occurs between an exact value of the quantity under consideration and the approximation to it. An approximation error may occur because the data measured by the instrument is not accurate Or we use approximations instead of the real details.
Formula used: $V = \pi {r^2}L,\rho = \dfrac{m}{V} = \dfrac{m}{{\pi {r^2}L}},\log \dfrac{a}{b} = \log a - \log b$
Complete step-by-step solution:
Given that
$
m + \Delta m = (0.3 \pm 0.003)g \\
r + \Delta r = (0.5 \pm 0.005)mm \\
L + \Delta L = (6 \pm 0.06)cm $
We know that the volume of the wire is given by, $V = \pi {r^2}L$
Thus, the density of the wire, $\rho = \dfrac{m}{V} = \dfrac{m}{{\pi {r^2}L}}$
Taking log on both the sides, we get
$
\because \rho = \dfrac{m}{{\pi {r^2}L}} \\
\Rightarrow \log (\rho ) = \log \left( {\dfrac{m}{{\pi {r^2}L}}} \right) \\
\Rightarrow \log (\rho ) = \log \left( m \right) - \log (\pi {r^2}L){\text{ }}\left[ {\because \log \dfrac{a}{b} = \log a - \log b} \right] $
Now after differentiating both the side, we get:
$
\Rightarrow \dfrac{1}{\rho }d\rho = \dfrac{1}{m}dm + 2\dfrac{1}{r}dr + \dfrac{1}{L}dL \\
\Rightarrow \dfrac{{\Delta \rho }}{\rho } = \dfrac{{\Delta m}}{m} + 2\dfrac{{\Delta r}}{r} + \dfrac{{\Delta L}}{L} \\
\therefore \dfrac{{\Delta \rho }}{\rho } \times 100 = \dfrac{{\Delta m}}{m} \times 100 + 2\dfrac{{\Delta r}}{r} \times 100 + \dfrac{{\Delta L}}{L} \times 100 $
Notice that we had a negative sign which changed to positive after differentiating , this is because we are trying to compute the error in the measurement or the deviation of the result so it is cumulative i.e. irrespective of sign it will be positive.
Now, Let us substitute all the values known to us in the above-found formula, we get
$
\dfrac{{\Delta \rho }}{\rho } \times 100 = \dfrac{{\Delta m}}{m} \times 100 + 2\dfrac{{\Delta r}}{r} \times 100 + \dfrac{{\Delta L}}{L} \times 100 \\
\Rightarrow \dfrac{{\Delta \rho }}{\rho } \times 100 = \dfrac{{0.003}}{{0.3}} \times 100 + 2\dfrac{{0.005}}{{0.5}} \times 100 + \dfrac{{0.06}}{6} \times 100 \\
\Rightarrow \dfrac{{\Delta \rho }}{\rho } \times 100 = 1 + 2 + 1 \\
\Rightarrow \dfrac{{\Delta \rho }}{\rho } \times 100 = 4\% $
Hence, the maximum percentage error in the measurement of its density is 4%
So, the correct answer is option D.
Note: Error is the difference between the actual value of any physical quantity and its calculated value. In physics, there are essentially three types of mistakes, spontaneous mistakes, blunders, and systematic errors. In some data, the approximation error occurs between an exact value of the quantity under consideration and the approximation to it. An approximation error may occur because the data measured by the instrument is not accurate Or we use approximations instead of the real details.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE