Answer
Verified
496.2k+ views
Hint: Use the basic definition of volume. As we can relate that if we dug soil with
$7m$ diameter and $30m$ deep, then it is termed as well but if we observe it geometrically
then it is of the cylindrical shape which has some given height and diameter.
The soil present inside the well (dug out) represents the volume of the cylinder as we are
talking about the quantity part of the cylinder.
Hence, soil dug out$=$ volume of cylinder or well $=\pi {{R}^{2}}H$(Formula to calculate
volume of cylinder)
Where, $R=$ radius of cylinder
$H=$ Height of cylinder
$\pi =\dfrac{22}{7}$
Soil dug out of well $=\dfrac{22}{7}{{\left( \dfrac{7}{2} \right)}^{2}}\times 30$
$\because $ radius $=$ diameter
$\dfrac{-r}{2}$
$\begin{align}
& =\dfrac{22}{7}\times \dfrac{49}{4}\times 30 \\
& =22\times 7\times \dfrac{15}{2}=77\times 15 \\
\end{align}$
Soil dug out $=1155{{m}^{3}}.................\left( i \right)$
Now, as discussed in the question that the soil dug out from the well is transformed to
platform I form of cuboid which has some height, width and length.
From the question we have
$\begin{align}
& L=30m \\
& B=10m \\
& H=? \\
\end{align}$
(Need to calculate)
Now, we can relate from the above information that soil dug out from the cylinder is
converted in the shape of a cuboid; and as we have already discussed that soil represents
quantity which is getting converted from one form to another quantity will remain constant
whatever the shape would be.
Now, let us calculate volume of cuboid/platform
$V=length\times breadth\times height$
From the given information in question:
$\begin{align}
& L=30m \\
& B=10m \\
& H=? \\
\end{align}$
$\begin{align}
& V=30\times 10\times H \\
& V=300H{{m}^{3}}..............\left( ii \right) \\
\end{align}$
As we have related already that
Volume of well $=$ Volume of platform
Hence, from the equation (i) and (ii)
\[\begin{align}
& 300H=1155 \\
& H=\dfrac{1155}{300} \\
& H=\dfrac{385}{100}=3.85m \\
\end{align}\]
Hence, height of platform $=3.85m$
Note: One can relate the surface areas (total/curved) between cylinder/well and platform/cuboid, but that will give the wrong answer because quantity is not represented by area of any geometrical shape. Area represents the amount of space enclosed whereas volume determines the capacity of solids.Hence, we need to take care of it.
$7m$ diameter and $30m$ deep, then it is termed as well but if we observe it geometrically
then it is of the cylindrical shape which has some given height and diameter.
The soil present inside the well (dug out) represents the volume of the cylinder as we are
talking about the quantity part of the cylinder.
Hence, soil dug out$=$ volume of cylinder or well $=\pi {{R}^{2}}H$(Formula to calculate
volume of cylinder)
Where, $R=$ radius of cylinder
$H=$ Height of cylinder
$\pi =\dfrac{22}{7}$
Soil dug out of well $=\dfrac{22}{7}{{\left( \dfrac{7}{2} \right)}^{2}}\times 30$
$\because $ radius $=$ diameter
$\dfrac{-r}{2}$
$\begin{align}
& =\dfrac{22}{7}\times \dfrac{49}{4}\times 30 \\
& =22\times 7\times \dfrac{15}{2}=77\times 15 \\
\end{align}$
Soil dug out $=1155{{m}^{3}}.................\left( i \right)$
Now, as discussed in the question that the soil dug out from the well is transformed to
platform I form of cuboid which has some height, width and length.
From the question we have
$\begin{align}
& L=30m \\
& B=10m \\
& H=? \\
\end{align}$
(Need to calculate)
Now, we can relate from the above information that soil dug out from the cylinder is
converted in the shape of a cuboid; and as we have already discussed that soil represents
quantity which is getting converted from one form to another quantity will remain constant
whatever the shape would be.
Now, let us calculate volume of cuboid/platform
$V=length\times breadth\times height$
From the given information in question:
$\begin{align}
& L=30m \\
& B=10m \\
& H=? \\
\end{align}$
$\begin{align}
& V=30\times 10\times H \\
& V=300H{{m}^{3}}..............\left( ii \right) \\
\end{align}$
As we have related already that
Volume of well $=$ Volume of platform
Hence, from the equation (i) and (ii)
\[\begin{align}
& 300H=1155 \\
& H=\dfrac{1155}{300} \\
& H=\dfrac{385}{100}=3.85m \\
\end{align}\]
Hence, height of platform $=3.85m$
Note: One can relate the surface areas (total/curved) between cylinder/well and platform/cuboid, but that will give the wrong answer because quantity is not represented by area of any geometrical shape. Area represents the amount of space enclosed whereas volume determines the capacity of solids.Hence, we need to take care of it.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it