
A vertical wall of height running from south to north has a height. A policeman of height b > a is standing in front of the wall at a distance c from it on the eastern side. What should be the maximum distance of a crawling thief from the wall so that the thief can hide from the view of the policeman if the thief is on the other side of the wall in the west of the policeman?
a) $\dfrac{ac}{b-a}$
b) $\dfrac{bc}{b-a}$
c) $\dfrac{a+b}{b-a}.c$
d) $\dfrac{ac}{b-a}$
Answer
571.5k+ views
Hint: Let us assume that the distance of a crawling thief from wall is x in the west direction. So, we gathered two triangles. Now, by using the similarity of triangles, find the value of x.
Complete step by step answer:
We have:
Height of wall: DE = a
Height of policeman: BC = b
Distance of policeman from wall: BC = c
Now, we have two triangles as: $\Delta ABC$ and $\Delta ADE$
In $\Delta ABC$ and $\Delta ADE$
Since, $DE\parallel BC$
Therefore, $\angle ADE=\angle ABC$ and $\angle AED=\angle ACB$ (alternate interior angles)
So, $\Delta ABC\approx \Delta ADE$ ( by AAA similarity)
Therefore, we can say that:
$\dfrac{AD}{AB}=\dfrac{DE}{BC}=\dfrac{AE}{AC}$
So, we have:
$\begin{align}
& \Rightarrow \dfrac{AD}{AB}=\dfrac{DE}{BC} \\
& \Rightarrow \dfrac{AD}{AD+DB}=\dfrac{DE}{BC} \\
& \Rightarrow \dfrac{x}{x+c}=\dfrac{a}{b} \\
\end{align}$
So, by solving the above equation, we get:
$\begin{align}
& \Rightarrow bx=a\left( x+c \right) \\
& \Rightarrow bx-ax=ac \\
& \Rightarrow x\left( b-a \right)=ac \\
& \Rightarrow x=\dfrac{ac}{b-a} \\
\end{align}$
So, the correct answer is “Option D”.
Note:
Two triangles are said to be similar if
a) Their corresponding angles are equal, and
b) Their corresponding sides are proportional.
Complete step by step answer:
We have:
Height of wall: DE = a
Height of policeman: BC = b
Distance of policeman from wall: BC = c
Now, we have two triangles as: $\Delta ABC$ and $\Delta ADE$
In $\Delta ABC$ and $\Delta ADE$
Since, $DE\parallel BC$
Therefore, $\angle ADE=\angle ABC$ and $\angle AED=\angle ACB$ (alternate interior angles)
So, $\Delta ABC\approx \Delta ADE$ ( by AAA similarity)
Therefore, we can say that:
$\dfrac{AD}{AB}=\dfrac{DE}{BC}=\dfrac{AE}{AC}$
So, we have:
$\begin{align}
& \Rightarrow \dfrac{AD}{AB}=\dfrac{DE}{BC} \\
& \Rightarrow \dfrac{AD}{AD+DB}=\dfrac{DE}{BC} \\
& \Rightarrow \dfrac{x}{x+c}=\dfrac{a}{b} \\
\end{align}$
So, by solving the above equation, we get:
$\begin{align}
& \Rightarrow bx=a\left( x+c \right) \\
& \Rightarrow bx-ax=ac \\
& \Rightarrow x\left( b-a \right)=ac \\
& \Rightarrow x=\dfrac{ac}{b-a} \\
\end{align}$
So, the correct answer is “Option D”.
Note:
Two triangles are said to be similar if
a) Their corresponding angles are equal, and
b) Their corresponding sides are proportional.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

