
A veranda of width 2.25 m is constructed all along outside a room which is 5.5 m long and 4 m wide. Find:
(i) The area of the veranda.
(ii) The cost of cementing the floor of the veranda at the cost of Rs. 200 per sq. m.
Answer
612k+ views
Hint: To find the area of the veranda, we will need to find the dimensions of the veranda by considering its width. We will subtract the area of the room from the area of the room and veranda. After finding the area, we will multiply it by the cost per sq. m to find the total cost.
Complete step-by-step answer:
Let us draw a diagram to help us find the area.
We will find the area of the veranda by subtracting the area of the smaller rectangle from the larger rectangle.
The dimensions of the inner rectangle are 5.5m $\times $ 4 m. Thus, the area of the rectangle is the product of length and width.
Area = Length $\times $ Width
$\begin{align}
& \Rightarrow \text{Area = 4 }\times \text{ 5}\text{.5 sq}\text{. m} \\
& \\
& =22\text{ sq}\text{. m} \\
\end{align}$
To find the area of the larger rectangle, we must first find its dimensions. The length will be the length of the inner rectangle plus the length of the veranda.
Thus, Length = 5.5 + 2.25 + 2.25 m
$\Rightarrow \text{ Length = }10\text{ m}$
The width of the outer rectangle will be the width of the inner rectangle plus the width of the veranda.
Thus, Width = 4 + 2.25 + 2.25 m
$\Rightarrow \text{ Width = 8}\text{.5 m}$
Now, after finding the dimensions of the outer rectangle, we can find its area.
Area = Length $\times $ Width
$\begin{align}
& \Rightarrow \text{ Area = }10\times 8.5\text{ sq}\text{. m} \\
& \\
& \text{=85 sq}\text{. m} \\
\end{align}$
Hence, the area of the veranda is the difference between the two areas.
Area = Outer Area – Inner Area
= 85 – 22 sq. m
= 63 sq. m
Thus, the area of the veranda is 63 sq. m.
Now, to find the cost of cementing the veranda, we must multiply the area of the veranda by the cost per sq. m which is Rupees 200.
Hence, Total Cost = Area $\times $ Cost per sq. m
= 63 $\times $ 200
= 12600
So the area of the veranda is 63 sq. m and the cost of cementing is Rs. 12600.
Note: There is another method to find the area of the veranda. We can split the veranda into four smaller rectangles, find their areas individually, and add them to get the total area. However, this method can be slightly longer and will involve more difficult calculations.
Complete step-by-step answer:
Let us draw a diagram to help us find the area.
We will find the area of the veranda by subtracting the area of the smaller rectangle from the larger rectangle.
The dimensions of the inner rectangle are 5.5m $\times $ 4 m. Thus, the area of the rectangle is the product of length and width.
Area = Length $\times $ Width
$\begin{align}
& \Rightarrow \text{Area = 4 }\times \text{ 5}\text{.5 sq}\text{. m} \\
& \\
& =22\text{ sq}\text{. m} \\
\end{align}$
To find the area of the larger rectangle, we must first find its dimensions. The length will be the length of the inner rectangle plus the length of the veranda.
Thus, Length = 5.5 + 2.25 + 2.25 m
$\Rightarrow \text{ Length = }10\text{ m}$
The width of the outer rectangle will be the width of the inner rectangle plus the width of the veranda.
Thus, Width = 4 + 2.25 + 2.25 m
$\Rightarrow \text{ Width = 8}\text{.5 m}$
Now, after finding the dimensions of the outer rectangle, we can find its area.
Area = Length $\times $ Width
$\begin{align}
& \Rightarrow \text{ Area = }10\times 8.5\text{ sq}\text{. m} \\
& \\
& \text{=85 sq}\text{. m} \\
\end{align}$
Hence, the area of the veranda is the difference between the two areas.
Area = Outer Area – Inner Area
= 85 – 22 sq. m
= 63 sq. m
Thus, the area of the veranda is 63 sq. m.
Now, to find the cost of cementing the veranda, we must multiply the area of the veranda by the cost per sq. m which is Rupees 200.
Hence, Total Cost = Area $\times $ Cost per sq. m
= 63 $\times $ 200
= 12600
So the area of the veranda is 63 sq. m and the cost of cementing is Rs. 12600.
Note: There is another method to find the area of the veranda. We can split the veranda into four smaller rectangles, find their areas individually, and add them to get the total area. However, this method can be slightly longer and will involve more difficult calculations.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

How is gypsum formed class 10 chemistry CBSE

If the line 3x + 4y 24 0 intersects the xaxis at t-class-10-maths-CBSE

Sugar present in DNA is A Heptose B Hexone C Tetrose class 10 biology CBSE

Trending doubts
The average rainfall in India is A 105cm B 90cm C 120cm class 10 biology CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Who Won 36 Oscar Awards? Record Holder Revealed

Indias first jute mill was established in 1854 in A class 10 social science CBSE

Indias first jute mill was established in 1854 in A class 10 social science CBSE

