
A uniform rod of length l and mass m is free to rotate in a vertical plane about A. The rod initially in a horizontal position is released. The initial angular acceleration of the rod is (Moment of inertia of rod about A is $\dfrac{{m{l^2}}}{3}$
A. $3g/2l$
B. $2l/3g$
C. $3g/2l^2$
D. $l/2$

Answer
501k+ views
Hint:to find the angular acceleration, use the formula that, Torque = Moment of inertia * Angular acceleration, substitute the values and solve the question.
Formula used - $T = I \times \alpha $ , $T = mg\dfrac{l}{2}$ , $I = \dfrac{{m{l^2}}}{3}$
Complete step by step answer:
Given a uniform rod of length l and mass m which is free to rotate in a vertical plane about point A.
Also, moment of inertia of rod about A is $\dfrac{{m{l^2}}}{3}$
Now, we know that Torque = Moment of inertia * Angular acceleration
Which implies, $T = I \times \alpha - (1)$ , here T is the torque, I is the moment of inertia and $\alpha $ is angular acceleration.
Now we also know that, Torque = Force * perpendicular distance.
Torque is acting at the centre of gravity of the rod so we can say-
$T = mg\dfrac{l}{2} - (2)$
here mg is the force due to gravity and l is the length of the rod.
Now equating equation (1) and (2), we get-
$I \times \alpha = mg\dfrac{l}{2}$
now, putting $I = \dfrac{{m{l^2}}}{3}$ we get-
$\dfrac{{m{l^2}}}{3} \times \alpha = mg\dfrac{l}{2}$
solving further we get-
$
\dfrac{{m{l^2}}}{3} \times \alpha = mg\dfrac{l}{2} \\
\Rightarrow \dfrac{l}{3} \times \alpha = g \times \dfrac{1}{2} \\
\Rightarrow \alpha = \dfrac{{3g}}{{2l}} \\
$
Therefore, the angular acceleration of the rod is 3g/2l.
Hence, the correct option is A.
Note – While solving such types of questions always first write down the information provided in the question then to find the angular acceleration use the formula as mentioned in the solution. Also, the inertia of the rod is given in the question as $I = \dfrac{{m{l^2}}}{3}$ and we know the torque is also given by force * perpendicular distance, so equating the two equations $I \times \alpha = mg\dfrac{l}{2}$ and then solving further we obtained the value of initial angular acceleration.
Formula used - $T = I \times \alpha $ , $T = mg\dfrac{l}{2}$ , $I = \dfrac{{m{l^2}}}{3}$
Complete step by step answer:
Given a uniform rod of length l and mass m which is free to rotate in a vertical plane about point A.
Also, moment of inertia of rod about A is $\dfrac{{m{l^2}}}{3}$
Now, we know that Torque = Moment of inertia * Angular acceleration
Which implies, $T = I \times \alpha - (1)$ , here T is the torque, I is the moment of inertia and $\alpha $ is angular acceleration.
Now we also know that, Torque = Force * perpendicular distance.
Torque is acting at the centre of gravity of the rod so we can say-
$T = mg\dfrac{l}{2} - (2)$
here mg is the force due to gravity and l is the length of the rod.
Now equating equation (1) and (2), we get-
$I \times \alpha = mg\dfrac{l}{2}$
now, putting $I = \dfrac{{m{l^2}}}{3}$ we get-
$\dfrac{{m{l^2}}}{3} \times \alpha = mg\dfrac{l}{2}$
solving further we get-
$
\dfrac{{m{l^2}}}{3} \times \alpha = mg\dfrac{l}{2} \\
\Rightarrow \dfrac{l}{3} \times \alpha = g \times \dfrac{1}{2} \\
\Rightarrow \alpha = \dfrac{{3g}}{{2l}} \\
$
Therefore, the angular acceleration of the rod is 3g/2l.
Hence, the correct option is A.
Note – While solving such types of questions always first write down the information provided in the question then to find the angular acceleration use the formula as mentioned in the solution. Also, the inertia of the rod is given in the question as $I = \dfrac{{m{l^2}}}{3}$ and we know the torque is also given by force * perpendicular distance, so equating the two equations $I \times \alpha = mg\dfrac{l}{2}$ and then solving further we obtained the value of initial angular acceleration.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE

The area of a 6m wide road outside a garden in all class 10 maths CBSE

What is the electric flux through a cube of side 1 class 10 physics CBSE

If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE

The radius and height of a cylinder are in the ratio class 10 maths CBSE

An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Explain the Treaty of Vienna of 1815 class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE
