Answer
Verified
476.1k+ views
Hint: Try to understand the system given in the question. We need to understand the property of the moment of inertia and conservation of angular momentum to solve this question.
Try to find the initial and final moment of inertia and then apply the law of conservation of angular momentum to solve the question.
Complete step by step answer:
Given, the mass of the uniform disk is, $M=50kg$
Radius of the disk, $R=0.4m$
The disk is rotating with an angular velocity, ${{\omega }_{i}}=10rad{{s}^{-1}}$
Now, we put two uniform circular rings, each of mass \[m=\text{ }6.25\text{ }kg\] and radius $r=0.2m$ , symmetrically on the disc in such a manner that they are touching each other along the axis of the disc and are horizontal.
Rings are at rest relative to the disk. So, we don’t have any external force or external torque on the disk.
To find the final angular velocity we will use the law of conservation of angular momentum.
Law of conservation of angular momentum gives that the initial and final angular momentum of the system is equal.
${{I}_{i}}{{\omega }_{i}}={{I}_{f}}{{\omega }_{f}}$
We know the value of initial angular velocity, and we can find out the moment of inertia of the initial and the final system.
So,
${{\omega }_{f}}=\dfrac{{{I}_{i}}{{\omega }_{i}}}{{{I}_{f}}}$
Now, moment of inertia of the uniform disk will be, ${{I}_{i}}=\dfrac{1}{2}M{{R}^{2}}$
Final moment of inertia of the system is, $\begin{align}
& {{I}_{f}}=\dfrac{1}{2}M{{R}^{2}}+2\times \left( {{I}_{cm}}+m{{r}^{2}} \right) \\
& {{I}_{f}}=\dfrac{1}{2}M{{R}^{2}}+2\times \left( m{{r}^{2}}+m{{r}^{2}} \right) \\
& {{I}_{f}}=\dfrac{1}{2}M{{R}^{2}}+4\times m{{r}^{2}} \\
\end{align}$
Now,
$\begin{align}
& {{\omega }_{f}}=\dfrac{{{I}_{i}}{{\omega }_{i}}}{{{I}_{f}}} \\
& {{\omega }_{f}}=\dfrac{\dfrac{1}{2}M{{R}^{2}}\times 10}{\dfrac{1}{2}M{{R}^{2}}+4\times m{{r}^{2}}} \\
& {{\omega }_{f}}=\dfrac{\dfrac{1}{2}\times 50\times {{0.4}^{2}}\times 10}{\dfrac{1}{2}\times 50\times {{0.4}^{2}}+4\times 6.25\times {{0.2}^{2}}} \\
& {{\omega }_{f}}=\dfrac{40}{4+1} \\
& {{\omega }_{f}}=\dfrac{40}{5} \\
& {{\omega }_{f}}=8rad{{s}^{-1}} \\
\end{align}$
So, the final angular velocity will be, ${{\omega }_{f}}=8rad{{s}^{-1}}$.
Note: In this problem there is no external force or external torque is applied on the system. Because of the absence of any external force we can use the law of conservation of angular momentum on this system. Again, when solving this type of question always try to see if the units of the physical quantities are in the same measuring unit. If they are different then try to convert them to the same unit.
Try to find the initial and final moment of inertia and then apply the law of conservation of angular momentum to solve the question.
Complete step by step answer:
Given, the mass of the uniform disk is, $M=50kg$
Radius of the disk, $R=0.4m$
The disk is rotating with an angular velocity, ${{\omega }_{i}}=10rad{{s}^{-1}}$
Now, we put two uniform circular rings, each of mass \[m=\text{ }6.25\text{ }kg\] and radius $r=0.2m$ , symmetrically on the disc in such a manner that they are touching each other along the axis of the disc and are horizontal.
Rings are at rest relative to the disk. So, we don’t have any external force or external torque on the disk.
To find the final angular velocity we will use the law of conservation of angular momentum.
Law of conservation of angular momentum gives that the initial and final angular momentum of the system is equal.
${{I}_{i}}{{\omega }_{i}}={{I}_{f}}{{\omega }_{f}}$
We know the value of initial angular velocity, and we can find out the moment of inertia of the initial and the final system.
So,
${{\omega }_{f}}=\dfrac{{{I}_{i}}{{\omega }_{i}}}{{{I}_{f}}}$
Now, moment of inertia of the uniform disk will be, ${{I}_{i}}=\dfrac{1}{2}M{{R}^{2}}$
Final moment of inertia of the system is, $\begin{align}
& {{I}_{f}}=\dfrac{1}{2}M{{R}^{2}}+2\times \left( {{I}_{cm}}+m{{r}^{2}} \right) \\
& {{I}_{f}}=\dfrac{1}{2}M{{R}^{2}}+2\times \left( m{{r}^{2}}+m{{r}^{2}} \right) \\
& {{I}_{f}}=\dfrac{1}{2}M{{R}^{2}}+4\times m{{r}^{2}} \\
\end{align}$
Now,
$\begin{align}
& {{\omega }_{f}}=\dfrac{{{I}_{i}}{{\omega }_{i}}}{{{I}_{f}}} \\
& {{\omega }_{f}}=\dfrac{\dfrac{1}{2}M{{R}^{2}}\times 10}{\dfrac{1}{2}M{{R}^{2}}+4\times m{{r}^{2}}} \\
& {{\omega }_{f}}=\dfrac{\dfrac{1}{2}\times 50\times {{0.4}^{2}}\times 10}{\dfrac{1}{2}\times 50\times {{0.4}^{2}}+4\times 6.25\times {{0.2}^{2}}} \\
& {{\omega }_{f}}=\dfrac{40}{4+1} \\
& {{\omega }_{f}}=\dfrac{40}{5} \\
& {{\omega }_{f}}=8rad{{s}^{-1}} \\
\end{align}$
So, the final angular velocity will be, ${{\omega }_{f}}=8rad{{s}^{-1}}$.
Note: In this problem there is no external force or external torque is applied on the system. Because of the absence of any external force we can use the law of conservation of angular momentum on this system. Again, when solving this type of question always try to see if the units of the physical quantities are in the same measuring unit. If they are different then try to convert them to the same unit.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it