
A tunnel is dug in the earth across one of its diameter. Two masses m and 2m are dropped from the two ends of the tunnel. The masses collide and stick to each other. They perform SHM, the amplitude of which is (R=radius of earth):
A) $R$.
B) $\dfrac{R}{2}$.
C) $\dfrac{R}{3}$.
D) $\dfrac{{2R}}{3}$.
Answer
568.8k+ views
Hint:A simple harmonic motion is a periodic motion in which there is a restoring force which is acting towards the equilibrium position of the body. Also the restoring force is proportional to the displacement of the body executing simple harmonic motion.
Formula used: The formula of gravitational energy at centre is given by,
${P_c} = \dfrac{{ - 3}}{2}\left( {\dfrac{{G{M_e}m}}{{{R_e}}}} \right)$.
Where G is the universal gravitational constant m is the mass of the body ${M_e}$ is the mass of the earth and ${R_e}$ is the radius of the earth.
The formula of the gravitational energy of body on the earth surface is given by,
\[{P_s} = \left( {\dfrac{{G{M_e}m}}{{{R_e}}}} \right)\]
Where G is the universal gravitational constant m is the mass of the body ${M_e}$ is the mass of the earth and ${R_e}$ is the radius of the earth.
Complete step-by-step answer:
It is given in the problem that a tunnel is dig into the earth along the diameter and two particles are dropped from two opposite sides of mass m and 2m the two masses collide and stick to each other and then start oscillating and we need to find the value of the amplitude of the simple harmonic motion.
The acceleration of each particle is independent of the mass of the particles therefore the two particles will meet at the centre.
The energy of the particle of mass m at initially,
${E_i} = - \left( {\dfrac{{G{M_e}m}}{{{R_e}}}} \right) + 0$
The energy of the particle of mass m at finally,
${E_f} = \dfrac{{ - 3}}{2}\left( {\dfrac{{G{M_e}m}}{{{R_e}}}} \right) + \dfrac{1}{2}m{V_1}^2$
Conserve the energy of the particle of mass m,
\[ \Rightarrow - \left( {\dfrac{{G{M_e}m}}{{{R_e}}}} \right) = \dfrac{{ - 3}}{2}\left( {\dfrac{{G{M_e}m}}{{{R_e}}}} \right) + \dfrac{1}{2}m{V_1}^2\]
\[ \Rightarrow - \left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right) = \dfrac{{ - 3}}{2}\left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right) + \dfrac{1}{2}{V_1}^2\]
\[ \Rightarrow \dfrac{1}{2}{V_1}^2 = \dfrac{3}{2}\left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right) - \left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right)\]
\[ \Rightarrow {V_1}^2 = \left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right)\]
\[ \Rightarrow {V_1} = \sqrt {\dfrac{{G{M_e}}}{{{R_e}}}} \]
The energy of particle of mass 2m initially is,
${E_i} = - \left( {\dfrac{{G{M_e}2m}}{{{R_e}}}} \right) + 0$
The energy of the particle of mass 2m at finally,
${E_f} = \dfrac{{ - 3}}{2}\left( {\dfrac{{G{M_e}2m}}{{{R_e}}}} \right) + \dfrac{1}{2}\left( {2m} \right)\left( {{V_2}^2} \right)$
The energy conservation for the mass 2m.
$ \Rightarrow - \left( {\dfrac{{G{M_e}2m}}{{{R_e}}}} \right) + 0 = \dfrac{{ - 3}}{2}\left( {\dfrac{{G{M_e}2m}}{{{R_e}}}} \right) + \dfrac{1}{2}\left( {2m} \right)\left( {{V_2}^2} \right)$
$ \Rightarrow - \left( {\dfrac{{G{M_e}2}}{{{R_e}}}} \right) + 0 = \dfrac{{ - 3}}{1}\left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right) + \left( {{V_2}^2} \right)$
$ \Rightarrow - 2\left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right) + 0 = - 3\left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right) + \left( {{V_2}^2} \right)$
$ \Rightarrow \left( {{V_2}^2} \right) = 3\left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right) + - 2\left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right)$
$ \Rightarrow {V_2} = \sqrt {\dfrac{{G{M_e}}}{{{R_e}}}} $
Momentum conservation for the final velocity of both of the particles V’ will be,
$ \Rightarrow mV - 2mV = \left( {m + 2m} \right)V'$
$ \Rightarrow - mV = 3mV'$
$ \Rightarrow - V = 3V'$
$ \Rightarrow V' = \dfrac{{ - V}}{3}$
Energy conservation after collision is equal to,
$ \Rightarrow {E_i} = P.{E_i} + K.{E_i}$
$ \Rightarrow {E_i} = - \left( {\dfrac{3}{2}} \right) \times \left( {\dfrac{{3mG{M_e}}}{{{R_e}}}} \right) + \left( {\dfrac{1}{2} \times 3m} \right) \times \left( {\dfrac{1}{3}\sqrt {\dfrac{{G{M_e}}}{{{R_e}}}} } \right)$
Energy conservation after collision for final energy,
$ \Rightarrow {E_f} = P.{E_f} + K.{E_f}$
$ \Rightarrow {E_f} = - \dfrac{{3G{M_e}}}{{2{R_e}}}\left( {3{\operatorname{R} ^2}_e - {r^2}} \right) \times 3m + 0$
Applying energy conservation,
$ \Rightarrow {E_i} = {E_f}$
$ \Rightarrow \left( {\dfrac{{ - 3}}{2}} \right) \times \left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right) \times \left( {3m} \right) + \left( {\dfrac{1}{2}} \right) \times \left( {3m} \right) \times \left( {\dfrac{1}{9}} \right) \times \left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right) = - \left( {\dfrac{{3G{M_e}}}{{2{R_e}}}} \right) \times \left( {3{R^2} - {r^2}} \right) \times 3m$
$ \Rightarrow \left( { - \dfrac{{9G{M_e}m}}{{2{R_e}}}} \right) + \left( {\dfrac{{G{M_e}m}}{{6{R_e}}}} \right) = - \left( {\dfrac{{3G{M_e}}}{{2{R_e}}}} \right) \times \left( {3{R_e}^2 - {r^2}} \right) \times 3m$
After solving we get,
$ \Rightarrow r = \dfrac{R}{3}$
So the amplitude of oscillation will be$A = \dfrac{R}{3}$.
The correct answer for this problem is option C.
Note:It is advisable to students to remember the formula of the gravitational energy at centre of centre and the formula of gravitational energy at the surface of the earth as it can help to solve these problems.
Formula used: The formula of gravitational energy at centre is given by,
${P_c} = \dfrac{{ - 3}}{2}\left( {\dfrac{{G{M_e}m}}{{{R_e}}}} \right)$.
Where G is the universal gravitational constant m is the mass of the body ${M_e}$ is the mass of the earth and ${R_e}$ is the radius of the earth.
The formula of the gravitational energy of body on the earth surface is given by,
\[{P_s} = \left( {\dfrac{{G{M_e}m}}{{{R_e}}}} \right)\]
Where G is the universal gravitational constant m is the mass of the body ${M_e}$ is the mass of the earth and ${R_e}$ is the radius of the earth.
Complete step-by-step answer:
It is given in the problem that a tunnel is dig into the earth along the diameter and two particles are dropped from two opposite sides of mass m and 2m the two masses collide and stick to each other and then start oscillating and we need to find the value of the amplitude of the simple harmonic motion.
The acceleration of each particle is independent of the mass of the particles therefore the two particles will meet at the centre.
The energy of the particle of mass m at initially,
${E_i} = - \left( {\dfrac{{G{M_e}m}}{{{R_e}}}} \right) + 0$
The energy of the particle of mass m at finally,
${E_f} = \dfrac{{ - 3}}{2}\left( {\dfrac{{G{M_e}m}}{{{R_e}}}} \right) + \dfrac{1}{2}m{V_1}^2$
Conserve the energy of the particle of mass m,
\[ \Rightarrow - \left( {\dfrac{{G{M_e}m}}{{{R_e}}}} \right) = \dfrac{{ - 3}}{2}\left( {\dfrac{{G{M_e}m}}{{{R_e}}}} \right) + \dfrac{1}{2}m{V_1}^2\]
\[ \Rightarrow - \left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right) = \dfrac{{ - 3}}{2}\left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right) + \dfrac{1}{2}{V_1}^2\]
\[ \Rightarrow \dfrac{1}{2}{V_1}^2 = \dfrac{3}{2}\left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right) - \left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right)\]
\[ \Rightarrow {V_1}^2 = \left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right)\]
\[ \Rightarrow {V_1} = \sqrt {\dfrac{{G{M_e}}}{{{R_e}}}} \]
The energy of particle of mass 2m initially is,
${E_i} = - \left( {\dfrac{{G{M_e}2m}}{{{R_e}}}} \right) + 0$
The energy of the particle of mass 2m at finally,
${E_f} = \dfrac{{ - 3}}{2}\left( {\dfrac{{G{M_e}2m}}{{{R_e}}}} \right) + \dfrac{1}{2}\left( {2m} \right)\left( {{V_2}^2} \right)$
The energy conservation for the mass 2m.
$ \Rightarrow - \left( {\dfrac{{G{M_e}2m}}{{{R_e}}}} \right) + 0 = \dfrac{{ - 3}}{2}\left( {\dfrac{{G{M_e}2m}}{{{R_e}}}} \right) + \dfrac{1}{2}\left( {2m} \right)\left( {{V_2}^2} \right)$
$ \Rightarrow - \left( {\dfrac{{G{M_e}2}}{{{R_e}}}} \right) + 0 = \dfrac{{ - 3}}{1}\left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right) + \left( {{V_2}^2} \right)$
$ \Rightarrow - 2\left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right) + 0 = - 3\left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right) + \left( {{V_2}^2} \right)$
$ \Rightarrow \left( {{V_2}^2} \right) = 3\left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right) + - 2\left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right)$
$ \Rightarrow {V_2} = \sqrt {\dfrac{{G{M_e}}}{{{R_e}}}} $
Momentum conservation for the final velocity of both of the particles V’ will be,
$ \Rightarrow mV - 2mV = \left( {m + 2m} \right)V'$
$ \Rightarrow - mV = 3mV'$
$ \Rightarrow - V = 3V'$
$ \Rightarrow V' = \dfrac{{ - V}}{3}$
Energy conservation after collision is equal to,
$ \Rightarrow {E_i} = P.{E_i} + K.{E_i}$
$ \Rightarrow {E_i} = - \left( {\dfrac{3}{2}} \right) \times \left( {\dfrac{{3mG{M_e}}}{{{R_e}}}} \right) + \left( {\dfrac{1}{2} \times 3m} \right) \times \left( {\dfrac{1}{3}\sqrt {\dfrac{{G{M_e}}}{{{R_e}}}} } \right)$
Energy conservation after collision for final energy,
$ \Rightarrow {E_f} = P.{E_f} + K.{E_f}$
$ \Rightarrow {E_f} = - \dfrac{{3G{M_e}}}{{2{R_e}}}\left( {3{\operatorname{R} ^2}_e - {r^2}} \right) \times 3m + 0$
Applying energy conservation,
$ \Rightarrow {E_i} = {E_f}$
$ \Rightarrow \left( {\dfrac{{ - 3}}{2}} \right) \times \left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right) \times \left( {3m} \right) + \left( {\dfrac{1}{2}} \right) \times \left( {3m} \right) \times \left( {\dfrac{1}{9}} \right) \times \left( {\dfrac{{G{M_e}}}{{{R_e}}}} \right) = - \left( {\dfrac{{3G{M_e}}}{{2{R_e}}}} \right) \times \left( {3{R^2} - {r^2}} \right) \times 3m$
$ \Rightarrow \left( { - \dfrac{{9G{M_e}m}}{{2{R_e}}}} \right) + \left( {\dfrac{{G{M_e}m}}{{6{R_e}}}} \right) = - \left( {\dfrac{{3G{M_e}}}{{2{R_e}}}} \right) \times \left( {3{R_e}^2 - {r^2}} \right) \times 3m$
After solving we get,
$ \Rightarrow r = \dfrac{R}{3}$
So the amplitude of oscillation will be$A = \dfrac{R}{3}$.
The correct answer for this problem is option C.
Note:It is advisable to students to remember the formula of the gravitational energy at centre of centre and the formula of gravitational energy at the surface of the earth as it can help to solve these problems.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

