A train blows a whistle of frequency $$640\,Hz$$ in air. Find the difference in apparent frequencies of the whistle for a stationary observer, when the train moves towards and away from the observer with the speed of $$72\,km\,h{r^{ - 1}}$$
[Speed of sound in air $ = \,340\,m\,{s^{ - 1}}$ ]
Answer
Verified
459k+ views
Hint: When an observer moves towards or away from the source of sound, different frequencies are observed due to Doppler Effect. When the source moves towards the observer, the frequency increases and when the source moves away from the observer, the frequency decreases.
Complete step by step answer:
Doppler effect is observed in everyday life, when standing on a station; the approaching train’s siren feels to be having greater frequency. When the same trains pass us, the frequency seems to be decreasing.
The formula to calculate the apparent frequency is:
$$f = \left( {\dfrac{{v \pm {v_o}}}{{v \pm {v_s}}}} \right){f_0}$$
Here, $${f_0}$$ is the actual frequency that the source produces.
$$f$$ is the apparent frequency observed by the observer;
$$v$$ is the velocity of sound;
$${v_o}$$ is the velocity of the observer;
$${v_s}$$ is the velocity of the source.
The given values are:
$${v_o} = 0$$ as the observer is at rest;
$$v = 340\,m\,{s^{ - 1}}$$ given speed of sound in air;
$${f_0} = 60\,Hz$$ frequency at which the whistle is blown;
$${v_s} = 72\,km\,h{r^{ - 1}}\, = \,20\,m\,{s^1}$$ speed at which the train is moving towards the observer.
As the source is moving towards the observed, hence greater frequency is observed. Therefore, the above formula is modified as:
$$f = \left( {\dfrac{{v \pm {v_o}}}{{v - {v_s}}}} \right){f_0}$$
A decrease in denominator will increase the resultant frequency.
Substituting these values in above equation, we have:
$$f = \left( {\dfrac{{340 \pm 0}}{{340 - 20}}} \right)640$$
$$ \Rightarrow f = \dfrac{{340}}{{320}} \times 640$$
$$ \Rightarrow f = 680\,Hz$$
This is the frequency when the train is moving towards the observer.
When the train is moving away from the observer, the apparent frequency must decrease. Therefore, the formula is modified as:
$$f = \left( {\dfrac{{v \pm {v_o}}}{{v + {v_s}}}} \right){f_0}$$
As the denominator will increase, the overall value will decrease.
Substituting the values, we have:
$$f = \left( {\dfrac{{340 \pm 0}}{{340 + 20}}} \right) \times 640$$
$$ \Rightarrow f = \left( {\dfrac{{340}}{{360}}} \right) \times 640$$
$$ \Rightarrow f = 604.4\,Hz$$
This is the frequency when the train is moving away from the observer.
The frequency when the train moves towards and away from the observer is $$680\,Hz$$ and $$604.4\,Hz$$ respectively.
Note:
The Doppler effect is observed as the source starts moving towards the observer, the distance between them decreases and hence the sound wave reaches faster. While solving, convert the speed of the train in SI units. Also remember that if the observer would have been moving then we would have modified the equation accordingly.
Complete step by step answer:
Doppler effect is observed in everyday life, when standing on a station; the approaching train’s siren feels to be having greater frequency. When the same trains pass us, the frequency seems to be decreasing.
The formula to calculate the apparent frequency is:
$$f = \left( {\dfrac{{v \pm {v_o}}}{{v \pm {v_s}}}} \right){f_0}$$
Here, $${f_0}$$ is the actual frequency that the source produces.
$$f$$ is the apparent frequency observed by the observer;
$$v$$ is the velocity of sound;
$${v_o}$$ is the velocity of the observer;
$${v_s}$$ is the velocity of the source.
The given values are:
$${v_o} = 0$$ as the observer is at rest;
$$v = 340\,m\,{s^{ - 1}}$$ given speed of sound in air;
$${f_0} = 60\,Hz$$ frequency at which the whistle is blown;
$${v_s} = 72\,km\,h{r^{ - 1}}\, = \,20\,m\,{s^1}$$ speed at which the train is moving towards the observer.
As the source is moving towards the observed, hence greater frequency is observed. Therefore, the above formula is modified as:
$$f = \left( {\dfrac{{v \pm {v_o}}}{{v - {v_s}}}} \right){f_0}$$
A decrease in denominator will increase the resultant frequency.
Substituting these values in above equation, we have:
$$f = \left( {\dfrac{{340 \pm 0}}{{340 - 20}}} \right)640$$
$$ \Rightarrow f = \dfrac{{340}}{{320}} \times 640$$
$$ \Rightarrow f = 680\,Hz$$
This is the frequency when the train is moving towards the observer.
When the train is moving away from the observer, the apparent frequency must decrease. Therefore, the formula is modified as:
$$f = \left( {\dfrac{{v \pm {v_o}}}{{v + {v_s}}}} \right){f_0}$$
As the denominator will increase, the overall value will decrease.
Substituting the values, we have:
$$f = \left( {\dfrac{{340 \pm 0}}{{340 + 20}}} \right) \times 640$$
$$ \Rightarrow f = \left( {\dfrac{{340}}{{360}}} \right) \times 640$$
$$ \Rightarrow f = 604.4\,Hz$$
This is the frequency when the train is moving away from the observer.
The frequency when the train moves towards and away from the observer is $$680\,Hz$$ and $$604.4\,Hz$$ respectively.
Note:
The Doppler effect is observed as the source starts moving towards the observer, the distance between them decreases and hence the sound wave reaches faster. While solving, convert the speed of the train in SI units. Also remember that if the observer would have been moving then we would have modified the equation accordingly.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE