
A takes twice as much time as B or thrice as much time as C to finish a piece of work. Working together, they can finish the work in 2 days. B can do the work alone in
(a) 3 days
(b) 7 days
(c) 4 days
(d) 6 days
Answer
600.3k+ views
Hint: Find the units of work done by each of them per day then we can find number of units of total work. Do this by using per day fraction of work.
\[Per\text{ }day\text{ }fraction\text{ }=\text{ }\dfrac{1}{Time\text{ }taken}\]
Complete step-by-step answer:
They will work together for 2 days and finish the work.
Case 1: Let the time taken by A to finish a piece of work be a. Then the per day fraction of work done by A will be $\left( \dfrac{1}{a} \right)$
Case 2: Let the time taken by B to finish a piece of work be b. Then the per day fraction of work done by B will be $\left( \dfrac{1}{b} \right)$
Case 3: Let the time taken by C to finish a piece of work be c. Then the per day fraction of work done by C will be $\left( \dfrac{1}{c} \right)$
So,
Total per day fraction of work will be sum of all cases
Total per day fraction of work = (Case 1) + (Case 2) + (Case 3)
Total per day fraction of work = $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$
We know:
(Total time).(Total per day fraction of work) = 1
Here 1 implies that work is completed.
So, by substituting 2 days into equation, we get:
$2\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)=1.........(i)$
Given:
A take twice as much time as B.
A take thrice as much time as C.
By using above conditions, we get:
a = 2b and a = 3c
By substituting these into equation(i), we get
$2\left( \dfrac{1}{a}+\dfrac{1}{\dfrac{a}{2}}+\dfrac{1}{\dfrac{a}{3}} \right)=1$
By solving this, we get:
$2\left( \dfrac{1}{a}+\dfrac{2}{a}+\dfrac{3}{a} \right)=1$
By taking least common multiple and then adding the fractions, we get:
$2\left( \dfrac{6}{a} \right)=1$
By multiplying both sides with a, we get:
$\dfrac{12}{a}.a=a$
a = 12
By using given conditions, we found relation between a and b:
a = 2b
By substituting value of a, we get:
12 = 2b
By dividing 2 on both sides, we get:
$b=\dfrac{12}{2}=6$
Therefore, it takes 6 days for B to complete the work alone.
Option (d) is correct.
Note: Do not confuse time taken and per day fraction of work. The simple relation is stated in the hint.
\[Per\text{ }day\text{ }fraction\text{ }=\text{ }\dfrac{1}{Time\text{ }taken}\]
Complete step-by-step answer:
They will work together for 2 days and finish the work.
Case 1: Let the time taken by A to finish a piece of work be a. Then the per day fraction of work done by A will be $\left( \dfrac{1}{a} \right)$
Case 2: Let the time taken by B to finish a piece of work be b. Then the per day fraction of work done by B will be $\left( \dfrac{1}{b} \right)$
Case 3: Let the time taken by C to finish a piece of work be c. Then the per day fraction of work done by C will be $\left( \dfrac{1}{c} \right)$
So,
Total per day fraction of work will be sum of all cases
Total per day fraction of work = (Case 1) + (Case 2) + (Case 3)
Total per day fraction of work = $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$
We know:
(Total time).(Total per day fraction of work) = 1
Here 1 implies that work is completed.
So, by substituting 2 days into equation, we get:
$2\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)=1.........(i)$
Given:
A take twice as much time as B.
A take thrice as much time as C.
By using above conditions, we get:
a = 2b and a = 3c
By substituting these into equation(i), we get
$2\left( \dfrac{1}{a}+\dfrac{1}{\dfrac{a}{2}}+\dfrac{1}{\dfrac{a}{3}} \right)=1$
By solving this, we get:
$2\left( \dfrac{1}{a}+\dfrac{2}{a}+\dfrac{3}{a} \right)=1$
By taking least common multiple and then adding the fractions, we get:
$2\left( \dfrac{6}{a} \right)=1$
By multiplying both sides with a, we get:
$\dfrac{12}{a}.a=a$
a = 12
By using given conditions, we found relation between a and b:
a = 2b
By substituting value of a, we get:
12 = 2b
By dividing 2 on both sides, we get:
$b=\dfrac{12}{2}=6$
Therefore, it takes 6 days for B to complete the work alone.
Option (d) is correct.
Note: Do not confuse time taken and per day fraction of work. The simple relation is stated in the hint.
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE

What is the difference between Electrochemical Series class 12 physics CBSE

What is the past tense and the past participle for class 10 english CBSE

In Rutherfords experiment the number of alpha particles class 12 physics CBSE

Describe the human respiratory system class 11 biology CBSE

The equation of the tangent to the circle x2+y2a2 which class 10 maths CBSE

Trending doubts
Convert 200 Million dollars in rupees class 7 maths CBSE

i What trees does Mr Wonka mention Which tree does class 7 english CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

What was the main occupation of early Aryans of rig class 7 social science CBSE

Write a letter to the editor of the national daily class 7 english CBSE

Welcome speech for Christmas day celebration class 7 english CBSE


