A stone of mass \[m\] tied to a string of length \[l\] is rotating along a circular path with constant speed \[v\]. What is the torque on the stone?
Answer
276.9k+ views
Hint: Uniform circular motion describes the movement of an object along a circular path with constant speed. Angular and tangential acceleration will be zero. Angular velocity and linear speed of the particle are always constant. The kinetic energy of the particle also remains constant. The net linear acceleration of the particle is always radially inwards. The magnitude of centripetal force remains constant. The magnitude of centripetal acceleration within a uniform circular motion is also constant. The examples of uniform circular motion are motion of the Earth around the Sun, second, minute and hour hands of the watch, motion of cyclists on a circular track, etc.
Formula used: \[T = r \times F\]
Where, \[T\]-Tension,\[r\]-radial direction, and \[F\]- the force acting on the mass.
Complete step-by-step solution:
\[T = r \times F\]
Where, \[T\]-Tension,\[r\]-radial direction, and \[F\]- the force acting on the mass.
The radial direction would be from stone to center (\[c\]) of the circular path. \[F\] is the force acting on mass(\[m\]). We all know that, if the body is moving within a circular motion, definitely there’ll be a centrifugal force working along the center of the path.
Clearly, \[r\] and \[F\] working on the same axis or parallel to each other.
Finally, we can say that the net torques are zero.
Note: Torque is termed as the measure of the force that can cause an object to rotate about an axis. Force is what causes an object to accelerate within linear kinematics. Similarly, torque is what causes an angular acceleration. Hence, torque can be termed as the rotational equivalent of linear force. In physics, torque is solely the tendency of a force to turn or twist. Different terminologies like moment or moment of force are interchangeably used to describe torque.
Formula used: \[T = r \times F\]
Where, \[T\]-Tension,\[r\]-radial direction, and \[F\]- the force acting on the mass.
Complete step-by-step solution:

\[T = r \times F\]
Where, \[T\]-Tension,\[r\]-radial direction, and \[F\]- the force acting on the mass.
The radial direction would be from stone to center (\[c\]) of the circular path. \[F\] is the force acting on mass(\[m\]). We all know that, if the body is moving within a circular motion, definitely there’ll be a centrifugal force working along the center of the path.
Clearly, \[r\] and \[F\] working on the same axis or parallel to each other.
Finally, we can say that the net torques are zero.
Note: Torque is termed as the measure of the force that can cause an object to rotate about an axis. Force is what causes an object to accelerate within linear kinematics. Similarly, torque is what causes an angular acceleration. Hence, torque can be termed as the rotational equivalent of linear force. In physics, torque is solely the tendency of a force to turn or twist. Different terminologies like moment or moment of force are interchangeably used to describe torque.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Define absolute refractive index of a medium

Which of the following would not be a valid reason class 11 biology CBSE

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What is meant by monosporic development of female class 11 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

How many meters are there in a kilometer And how many class 8 maths CBSE

What is pollution? How many types of pollution? Define it

Change the following sentences into negative and interrogative class 10 english CBSE

What were the major teachings of Baba Guru Nanak class 7 social science CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a labelled sketch of the human eye class 12 physics CBSE
