
A square of side x is taken. A rectangle is cut out from this square such that one side of the rectangle is half that of the square and the other is \[\dfrac{1}{3}\] of the first side of the rectangle. What is the area of the remaining portion?
A) \[\left( {\dfrac{3}{4}} \right){x^2}\]
B) \[\left( {\dfrac{7}{8}} \right){x^2}\]
C) \[\left( {\dfrac{{11}}{{12}}} \right){x^2}\]
D) \[\left( {\dfrac{{15}}{{16}}} \right){x^2}\]
Answer
594.9k+ views
Hint: Find the area of the square by taking a side square and the area of a rectangle by multiplying the length by width then subtract the area of the rectangle from the area of the square.
Complete step by step answer:
First, we will draw the figure to understand the question,
A rectangle is cut out from the square means the area of the square is larger than the rectangle so out the task is to subtract the area of the rectangle from the area of the square but for this first, we have to recognize the sides of the rectangle.
As this is given that one side of the rectangle is half of the side of the square, so one side of the rectangle is \[\dfrac{x}{2}\].
Now, another side of the rectangle is \[\dfrac{1}{3}\] of the first side of the rectangle so, we will multiply \[\dfrac{1}{3}\] by \[\dfrac{x}{2}\] to find the another side of the rectangle, we get \[\dfrac{1}{3} \cdot \dfrac{x}{2}\]
Now we have \[\dfrac{x}{2}\] as one side of rectangle and \[\dfrac{1}{3} \cdot \dfrac{x}{2}\] as another side.
We are multiplying both the sides of the rectangle to find the area of rectangle \[{A_r}\],
\[
{A_r} = \dfrac{x}{2} \cdot \left( {\dfrac{1}{3} \cdot \dfrac{x}{2}} \right) \\
= \dfrac{{{x^2}}}{{12}} \\
\]
One side of the square is x.
Now, we will find the area of square \[{A_s}\] by multiplying two sides of the square,
\[{A_s} = {x^2}\]
Now we will subtract the area of rectangle from the area of square to find the area of the remaining portion,
\[
A = {x^2} - \dfrac{{{x^2}}}{{12}} \\
= \dfrac{{12}}{{12}} \cdot {x^2} - \dfrac{{{x^2}}}{{12}} \\
= \dfrac{{12{x^2} - {x^2}}}{{12}} \\
= \dfrac{{11{x^2}}}{{12}} \\
\]
Thus, the area of the remaining portion is \[\dfrac{{11{x^2}}}{{12}}\]square units.
Hence, the correct option is (C).
Note:
Here the rectangle is cut out from the square so the area of the rectangle will be subtracted from the area of the square. The area of the square is larger than the area of the rectangle.
Complete step by step answer:
First, we will draw the figure to understand the question,
A rectangle is cut out from the square means the area of the square is larger than the rectangle so out the task is to subtract the area of the rectangle from the area of the square but for this first, we have to recognize the sides of the rectangle.
As this is given that one side of the rectangle is half of the side of the square, so one side of the rectangle is \[\dfrac{x}{2}\].
Now, another side of the rectangle is \[\dfrac{1}{3}\] of the first side of the rectangle so, we will multiply \[\dfrac{1}{3}\] by \[\dfrac{x}{2}\] to find the another side of the rectangle, we get \[\dfrac{1}{3} \cdot \dfrac{x}{2}\]
Now we have \[\dfrac{x}{2}\] as one side of rectangle and \[\dfrac{1}{3} \cdot \dfrac{x}{2}\] as another side.
We are multiplying both the sides of the rectangle to find the area of rectangle \[{A_r}\],
\[
{A_r} = \dfrac{x}{2} \cdot \left( {\dfrac{1}{3} \cdot \dfrac{x}{2}} \right) \\
= \dfrac{{{x^2}}}{{12}} \\
\]
One side of the square is x.
Now, we will find the area of square \[{A_s}\] by multiplying two sides of the square,
\[{A_s} = {x^2}\]
Now we will subtract the area of rectangle from the area of square to find the area of the remaining portion,
\[
A = {x^2} - \dfrac{{{x^2}}}{{12}} \\
= \dfrac{{12}}{{12}} \cdot {x^2} - \dfrac{{{x^2}}}{{12}} \\
= \dfrac{{12{x^2} - {x^2}}}{{12}} \\
= \dfrac{{11{x^2}}}{{12}} \\
\]
Thus, the area of the remaining portion is \[\dfrac{{11{x^2}}}{{12}}\]square units.
Hence, the correct option is (C).
Note:
Here the rectangle is cut out from the square so the area of the rectangle will be subtracted from the area of the square. The area of the square is larger than the area of the rectangle.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

