A spherical liquid drop is placed on a horizontal plane. A small disturbance causes the volume of the drop to oscillate. The time period of oscillation \[\left( T \right)\] of the liquid drop depends on radius $\left( r \right)$ of the drop, density $\left( \rho \right)$ and surface tension $\left( s \right)$ of the liquid. Which among the following will be a possible expression for $T$ (where $k$ is a dimensionless constant)?
A. $k\sqrt {\dfrac{{\rho r}}{s}} $
B. $k\sqrt {\dfrac{{{\rho ^2}r}}{s}} $
C. $k\sqrt {\dfrac{{\rho {r^3}}}{s}} $
D. $k\sqrt {\dfrac{{\rho {r^3}}}{{{s^2}}}} $
Answer
Verified
468.9k+ views
Hint:- As time period of oscillation \[\left( T \right)\] of the liquid drop depends on radius $\left( r \right)$ of the drop, density $\left( \rho \right)$ and surface tension $\left( s \right)$ of the liquid
So, the time period of oscillation can be given by the expression $T = k{r^x}{\rho ^y}{s^z}$ where k, x, y, z are dimensionless constants.
Now, equate the dimensions according to the expression and find the value of x, y and z.
Complete step-by-step solution:-
As given in the question that the time period of oscillation \[\left( T \right)\] of the liquid drop depends on radius $\left( r \right)$ of the drop, density $\left( \rho \right)$ and surface tension $\left( s \right)$ of the liquid
So, the time period of oscillation can be given by the expression $T = k{r^x}{\rho ^y}{s^z}$ where k, x, y, z are dimensionless constants.
Now, we equate the dimensions according to the expression to find the value of x, y and z
We know that the dimension of time period of oscillation $T$ is ${T^1}$ and that of radius $r$ is ${L^1}$
As we know density $\rho = \dfrac{{Mass}}{{Volume}}$ , so the dimension of $\rho $ will be $M{L^{ - 3}}$
And the surface tension is the force per unit length, so its dimension will be $M{T^{ - 2}}$
Now, substituting these dimension in the expression for $T$ we have
${T^1} = k{\left( {{L^1}} \right)^x}{\left( {M{L^{ - 3}}} \right)^y}{\left( {M{T^{ - 2}}} \right)^z}$
On simplifying we have
${T^1} = k{M^{y + z}}{L^{x - 3y}}{T^{ - 2z}}$
Now, as LHS has on time dimension so the other dimension in RHS must be zero
For M, $y + z = 0$ or $y = - z$ …… (1)
For L, $x - 3y = 0$ …… (2)
For T, $ - 2z = 1$ or $z = - \dfrac{1}{2}$ …… (3)
Now, substituting the value of z from equation (3) in equation (1) we get
$y = \dfrac{1}{2}$
Now, substituting the value of y in equation (2) we get
$x = 3y = \dfrac{3}{2}$
Now, substituting the value of x, y and z in the expression of $T$ we have
\[T = k{r^{3/2}}{\rho ^{1/2}}{s^{ - 1/2}}\]
On simplifying we get
$T = k\sqrt {\dfrac{{\rho {r^3}}}{s}} $
Hence, option C is correct.
Note:- Dimensions of any physical quantity are those raised powers on base units to specify its unit. Dimensional formula is the expression which shows how and which of the fundamental quantities represent the dimensions of a physical quantity.
So, the time period of oscillation can be given by the expression $T = k{r^x}{\rho ^y}{s^z}$ where k, x, y, z are dimensionless constants.
Now, equate the dimensions according to the expression and find the value of x, y and z.
Complete step-by-step solution:-
As given in the question that the time period of oscillation \[\left( T \right)\] of the liquid drop depends on radius $\left( r \right)$ of the drop, density $\left( \rho \right)$ and surface tension $\left( s \right)$ of the liquid
So, the time period of oscillation can be given by the expression $T = k{r^x}{\rho ^y}{s^z}$ where k, x, y, z are dimensionless constants.
Now, we equate the dimensions according to the expression to find the value of x, y and z
We know that the dimension of time period of oscillation $T$ is ${T^1}$ and that of radius $r$ is ${L^1}$
As we know density $\rho = \dfrac{{Mass}}{{Volume}}$ , so the dimension of $\rho $ will be $M{L^{ - 3}}$
And the surface tension is the force per unit length, so its dimension will be $M{T^{ - 2}}$
Now, substituting these dimension in the expression for $T$ we have
${T^1} = k{\left( {{L^1}} \right)^x}{\left( {M{L^{ - 3}}} \right)^y}{\left( {M{T^{ - 2}}} \right)^z}$
On simplifying we have
${T^1} = k{M^{y + z}}{L^{x - 3y}}{T^{ - 2z}}$
Now, as LHS has on time dimension so the other dimension in RHS must be zero
For M, $y + z = 0$ or $y = - z$ …… (1)
For L, $x - 3y = 0$ …… (2)
For T, $ - 2z = 1$ or $z = - \dfrac{1}{2}$ …… (3)
Now, substituting the value of z from equation (3) in equation (1) we get
$y = \dfrac{1}{2}$
Now, substituting the value of y in equation (2) we get
$x = 3y = \dfrac{3}{2}$
Now, substituting the value of x, y and z in the expression of $T$ we have
\[T = k{r^{3/2}}{\rho ^{1/2}}{s^{ - 1/2}}\]
On simplifying we get
$T = k\sqrt {\dfrac{{\rho {r^3}}}{s}} $
Hence, option C is correct.
Note:- Dimensions of any physical quantity are those raised powers on base units to specify its unit. Dimensional formula is the expression which shows how and which of the fundamental quantities represent the dimensions of a physical quantity.
Recently Updated Pages
Class 11 Question and Answer - Your Ultimate Solutions Guide
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE